These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30003669)

  • 1. Sculpting Extreme Electromagnetic Field Enhancement in Free Space for Molecule Sensing.
    Liu F; Song B; Su G; Liang O; Zhan P; Wang H; Wu W; Xie Y; Wang Z
    Small; 2018 Jul; ():e1801146. PubMed ID: 30003669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers.
    Song B; Yao Y; Groenewald RE; Wang Y; Liu H; Wang Y; Li Y; Liu F; Cronin SB; Schwartzberg AM; Cabrini S; Haas S; Wu W
    ACS Nano; 2017 Jun; 11(6):5836-5843. PubMed ID: 28599108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays.
    Wang Y; Chen B; Meng D; Song B; Liu Z; Hu P; Yang H; Ou TH; Liu F; Pi H; Pi I; Pi I; Wu W
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography.
    Lopatynskyi AM; Lytvyn VK; Nazarenko VI; Guo LJ; Lucas BD; Chegel VI
    Nanoscale Res Lett; 2015; 10():99. PubMed ID: 25852395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation.
    Long Y; Li H; Du Z; Geng M; Liu Z
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):698-708. PubMed ID: 32814193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Aluminum Ultraviolet Plasmonic Activity through a 1 nm ta-C Film.
    Wang J; Wu Z; Wei J; Hu J; Yu H; Su G; Hu L; Yan X; Zhan P; Liu F
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7672-7679. PubMed ID: 33512139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Plasmonics: Energy Transport Through Plasmonic Gap.
    Lee J; Jeon DJ; Yeo JS
    Adv Mater; 2021 Nov; 33(47):e2006606. PubMed ID: 33891781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic dye-sensitized solar cells through collapsible gold nanofingers.
    Fang W; Hu P; Wu Z; Xiao Y; Sui Y; Pan D; Su G; Zhu M; Zhan P; Liu F; Wu W
    Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34034240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.
    Ni H; Wang M; Shen T; Zhou J
    ACS Nano; 2015 Feb; 9(2):1913-25. PubMed ID: 25639937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic Energy Redistribution in Coupled Chiral Particle Chain-Film System.
    Tang Y; Huang Y; Qv L; Fang Y
    Nanoscale Res Lett; 2018 Jul; 13(1):194. PubMed ID: 29978337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong confinement of gap modes induced by the film modified electric and magnetic modes in dielectric nanoparticle dimers.
    Shi J; Ju L; Zhang X; Huang Y; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120465. PubMed ID: 34637984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical rectification and field enhancement in a plasmonic nanogap.
    Ward DR; Hüser F; Pauly F; Cuevas JC; Natelson D
    Nat Nanotechnol; 2010 Oct; 5(10):732-6. PubMed ID: 20852641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision.
    Song B; Jiang Z; Liu Z; Wang Y; Liu F; Cronin SB; Yang H; Meng D; Chen B; Hu P; Schwartzberg AM; Cabrini S; Haas S; Wu W
    ACS Nano; 2020 Nov; 14(11):14769-14778. PubMed ID: 33095557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators.
    Siegfried T; Ekinci Y; Martin OJ; Sigg H
    Nano Lett; 2013; 13(11):5449-53. PubMed ID: 24111580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering.
    Sun AY; Lee YC; Chang SW; Chen SL; Wang HC; Wan D; Chen HL
    Anal Chem; 2021 Mar; 93(9):4299-4307. PubMed ID: 33635644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.