These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 30003786)

  • 1. Novel Conductive Filament Metal-Interlayer-Semiconductor Contact Structure for Ultralow Contact Resistance Achievement.
    Kim SH; Kim GS; Park J; Lee C; Kim H; Kim J; Shim JH; Yu HY
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26378-26386. PubMed ID: 30003786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Schottky Barrier Height Modulation Using Interface Characteristics of MoS
    Kim SH; Han KH; Kim GS; Kim SG; Kim J; Yu HY
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6230-6237. PubMed ID: 30663311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultralow Schottky Barrier Height Achieved by Using Molybdenum Disulfide/Dielectric Stack for Source/Drain Contact.
    Kim SH; Han KH; Park E; Kim SG; Yu HY
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34084-34090. PubMed ID: 31429263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS
    Kim GS; Kim SH; Park J; Han KH; Kim J; Yu HY
    ACS Nano; 2018 Jun; 12(6):6292-6300. PubMed ID: 29851473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Depth Analysis on Self Alignment Effect of the Fermi-Level Using Graphene on Both n- and p-Type Semiconductors.
    Song S; Kim SH; Han KH; Kim HJ; Yu HY
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38033204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Contacts and Device Performance in MoS
    Andrews K; Bowman A; Rijal U; Chen PY; Zhou Z
    ACS Nano; 2020 May; 14(5):6232-6241. PubMed ID: 32320204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clean Interface Contact Using a ZnO Interlayer for Low-Contact-Resistance MoS
    Jang J; Kim Y; Chee SS; Kim H; Whang D; Kim GH; Yun SJ
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):5031-5039. PubMed ID: 31891246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contacts at the Nanoscale and for Nanomaterials.
    Wong H; Zhang J; Liu J
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-engineered Mo
    Yang J; Liu X; Deng X; Tang Z; Cao L
    Phys Chem Chem Phys; 2024 May; 26(21):15666-15671. PubMed ID: 38764438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertion of an ultrathin Al
    Zheng S; Lu H; Liu H; Liu D; Robertson J
    Nanoscale; 2019 Mar; 11(11):4811-4821. PubMed ID: 30816375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative Fermi-Level Pinning Effect of Metal/n-GaAs(001) Junction Induced by a Graphene Interlayer.
    Yoon HH; Song W; Jung S; Kim J; Mo K; Choi G; Jeong HY; Lee JH; Park K
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47182-47189. PubMed ID: 31755257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bonding enables two-dimensional metal/semiconductor tunable contacts approaching the quantum limit and the modified Schottky-Mott limit simultaneously.
    Liu D; Liu Z; Zhu J; Zhang M
    Mater Horiz; 2023 Nov; 10(12):5621-5632. PubMed ID: 37752785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward barrier free contact to MoSe
    Wang T; Jin H; Li J; Wei Y
    Nanotechnology; 2019 Jan; 30(1):015707. PubMed ID: 30375364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from Schottky to Ohmic contacts in 2D Ge/GaAs heterostructures with high tunneling probability.
    Shen Y; Zhu J; Zhang Q; Zhu H; Fang Q; Yang X; Wang B
    Phys Chem Chem Phys; 2024 Mar; 26(11):8842-8849. PubMed ID: 38426259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Status and prospects of Ohmic contacts on two-dimensional semiconductors.
    Ni J; Fu Q; Ostrikov KK; Gu X; Nan H; Xiao S
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34649226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjustment methods of Schottky barrier height in one- and two-dimensional semiconductor devices.
    Meng J; Lee C; Li Z
    Sci Bull (Beijing); 2024 May; 69(9):1342-1352. PubMed ID: 38490891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming the Fermi-Level Pinning Effect in the Nanoscale Metal and Silicon Interface.
    Su ZC; Lin CF
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of Fermi level pinning at Cu-BP interfaces by atomic passivation.
    Ou P; Zhou X; Chen C; Meng F; Chen Y; Song J
    Nanoscale; 2019 Jun; 11(24):11569-11576. PubMed ID: 31168532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diode-Like Selective Enhancement of Carrier Transport through Metal-Semiconductor Interface Decorated by Monolayer Boron Nitride.
    Jaiswal HN; Liu M; Shahi S; Wei S; Lee J; Chakravarty A; Guo Y; Wang R; Lee JM; Chang C; Fu Y; Dixit R; Liu X; Yang C; Yao F; Li H
    Adv Mater; 2020 Sep; 32(36):e2002716. PubMed ID: 32725788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning of Schottky Barrier Height at NiSi/Si Contact by Combining Dual Implantation of Boron and Aluminum and Microwave Annealing.
    Sun F; Li C; Fu C; Zhou X; Luo J; Zou W; Qiu ZJ; Wu D
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29565304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.