These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 30003863)
1. Preparation, Characterization and In Vivo Assessment of Repaglinide Nanosuspension for Oral Bioavailability Improvement. Zawar LR; Bari SB Recent Pat Drug Deliv Formul; 2018; 12(3):162-169. PubMed ID: 30003863 [TBL] [Abstract][Full Text] [Related]
2. Nanosuspension-Based Repaglinide Fast-Dissolving Buccal Film for Dissolution Enhancement. Ghadhban HY; Ahmed KK AAPS PharmSciTech; 2024 Jul; 25(6):161. PubMed ID: 38992175 [TBL] [Abstract][Full Text] [Related]
3. Improved oral bioavailability of repaglinide, a typical BCS Class II drug, with a chitosan-coated nanoemulsion. Karami Z; Saghatchi Zanjani MR; Nasihatsheno N; Hamidi M J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):717-728. PubMed ID: 31187938 [TBL] [Abstract][Full Text] [Related]
4. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability. Jain S; Reddy VA; Arora S; Patel K Drug Deliv Transl Res; 2016 Oct; 6(5):498-510. PubMed ID: 27129488 [TBL] [Abstract][Full Text] [Related]
5. Preparation, characterization and in vivo evaluation of formulation of repaglinide with hydroxypropyl-β-cyclodextrin. Liu M; Cao W; Sun Y; He Z Int J Pharm; 2014 Dec; 477(1-2):159-66. PubMed ID: 25455768 [TBL] [Abstract][Full Text] [Related]
6. Nanosizing of valsartan by high pressure homogenization to produce dissolution enhanced nanosuspension: pharmacokinetics and pharmacodyanamic study. Gora S; Mustafa G; Sahni JK; Ali J; Baboota S Drug Deliv; 2016; 23(3):940-50. PubMed ID: 24937379 [TBL] [Abstract][Full Text] [Related]
7. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations. Sawant KK; Patel MH; Patel K Drug Dev Ind Pharm; 2016; 42(5):758-68. PubMed ID: 26548349 [TBL] [Abstract][Full Text] [Related]
8. Development of olmesartan medoxomil optimized nanosuspension using the Box-Behnken design to improve oral bioavailability. Nagaraj K; Narendar D; Kishan V Drug Dev Ind Pharm; 2017 Jul; 43(7):1186-1196. PubMed ID: 28271908 [TBL] [Abstract][Full Text] [Related]
9. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: Preparation, characterization, and in vivo evaluation. Alshweiat A; Csóka I; Tömösi F; Janáky T; Kovács A; Gáspár R; Sztojkov-Ivanov A; Ducza E; Márki Á; Szabó-Révész P; Ambrus R Int J Pharm; 2020 Apr; 579():119166. PubMed ID: 32084574 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Ige PP; Baria RK; Gattani SG Colloids Surf B Biointerfaces; 2013 Aug; 108():366-73. PubMed ID: 23602990 [TBL] [Abstract][Full Text] [Related]
11. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Gajera BY; Shah DA; Dave RH Int J Pharm; 2019 Mar; 559():348-359. PubMed ID: 30721724 [TBL] [Abstract][Full Text] [Related]
12. Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. Rawat MK; Jain A; Singh S J Pharm Sci; 2011 Jun; 100(6):2366-78. PubMed ID: 21491449 [TBL] [Abstract][Full Text] [Related]
13. Nanoemulsion: for improved oral delivery of repaglinide. Akhtar J; Siddiqui HH; Fareed S; Badruddeen ; Khalid M; Aqil M Drug Deliv; 2016 Jul; 23(6):2026-34. PubMed ID: 27187792 [TBL] [Abstract][Full Text] [Related]
14. Repaglinide-loaded long-circulating biodegradable nanoparticles: rational approach for the management of type 2 diabetes mellitus. Jain S; Saraf S J Diabetes; 2009 Mar; 1(1):29-35. PubMed ID: 20923517 [TBL] [Abstract][Full Text] [Related]
15. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Patel PJ; Gajera BY; Dave RH Drug Dev Ind Pharm; 2018 Dec; 44(12):1942-1952. PubMed ID: 30027778 [TBL] [Abstract][Full Text] [Related]
16. Increase in Dissolution Rate of Zotepine via Nanomilling Process - Impact of Dried Nanocrystalline Suspensions on Bioavailability. Parmar K; Oza K AAPS PharmSciTech; 2021 Dec; 23(1):20. PubMed ID: 34907489 [TBL] [Abstract][Full Text] [Related]
17. Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension. Li W; Yang Y; Tian Y; Xu X; Chen Y; Mu L; Zhang Y; Fang L Int J Pharm; 2011 Apr; 408(1-2):157-62. PubMed ID: 21295124 [TBL] [Abstract][Full Text] [Related]
18. Formulation of Aceclofenac Tablets Using Nanosuspension as Granulating Agent: An Attempt to Enhance Dissolution Rate and Oral Bioavailability. Rahim H; Sadiq A; Ullah R; Bari A; Amin F; Farooq U; Ullah Jan N; Mahmood HM Int J Nanomedicine; 2020; 15():8999-9009. PubMed ID: 33235448 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of glimepiride nanosuspension by ultrasonication-assisted precipitation for improvement of oral bioavailability and in vitro α-glucosidase inhibition. Rahim H; Sadiq A; Khan S; Amin F; Ullah R; Shahat AA; Mahmood HM Int J Nanomedicine; 2019; 14():6287-6296. PubMed ID: 31496686 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability. Singh MK; Pooja D; Ravuri HG; Gunukula A; Kulhari H; Sistla R Phytomedicine; 2018 Feb; 40():48-54. PubMed ID: 29496174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]