These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 30003947)
1. Audible acoustic emission data analysis for active pharmaceutical ingredient concentration prediction during tableting processes. Tanaka R; Kojima K; Hattori Y; Ashizawa K; Otsuka M Int J Pharm; 2018 Sep; 548(1):721-727. PubMed ID: 30003947 [No Abstract] [Full Text] [Related]
2. Acoustic-resonance spectrometry as a process analytical technology for the quantification of active pharmaceutical ingredient in semi-solids. Medendorp J; Buice RG; Lodder RA AAPS PharmSciTech; 2006 Jul; 7(3):59. PubMed ID: 17025240 [TBL] [Abstract][Full Text] [Related]
3. Audible acoustics in high-shear wet granulation: application of frequency filtering. Hansuld EM; Briens L; McCann JA; Sayani A Int J Pharm; 2009 Aug; 378(1-2):37-44. PubMed ID: 19477258 [TBL] [Abstract][Full Text] [Related]
4. Predictive evaluation of pharmaceutical properties of direct compression tablets containing theophylline anhydrate during storage at high humidity by near-infrared spectroscopy. Otsuka Y; Yamamoto M; Tanaka H; Otsuka M Biomed Mater Eng; 2015; 25(3):223-36. PubMed ID: 26407109 [TBL] [Abstract][Full Text] [Related]
5. The 3-D model: comparison of parameters obtained from and by simulating different tableting machines. Picker KM AAPS PharmSciTech; 2003; 4(3):E35. PubMed ID: 14621967 [TBL] [Abstract][Full Text] [Related]
6. Drug tablet thickness estimations using air-coupled acoustics. Akseli I; Cetinkaya C Int J Pharm; 2008 Mar; 351(1-2):165-73. PubMed ID: 18022335 [TBL] [Abstract][Full Text] [Related]
7. [Tableting technology of a dry extract from Solidago virgaurea L. with the use of silicified microcrystalline cellulose (Prosolv) and other selected auxiliary substances]. Marczyiński Z Polim Med; 2009; 39(4):51-60. PubMed ID: 20099736 [TBL] [Abstract][Full Text] [Related]
8. Study of the compressibility of chewing gum and its applicability as an oral drug delivery system. Jójárt I; Kása P; Kelemen A; Pintye-Hódi K Pharm Dev Technol; 2016; 21(3):321-7. PubMed ID: 25673279 [TBL] [Abstract][Full Text] [Related]
9. Real time and non-destructive analysis of tablet coating thickness using acoustic microscopy and infrared diffuse reflectance spectroscopy. Bikiaris D; Koutri I; Alexiadis D; Damtsios A; Karagiannis G Int J Pharm; 2012 Nov; 438(1-2):33-44. PubMed ID: 22982166 [TBL] [Abstract][Full Text] [Related]
10. Continuous manufacturing of tablets with PROMIS-line - Introduction and case studies from continuous feeding, blending and tableting. Simonaho SP; Ketolainen J; Ervasti T; Toiviainen M; Korhonen O Eur J Pharm Sci; 2016 Jul; 90():38-46. PubMed ID: 26879237 [TBL] [Abstract][Full Text] [Related]
11. The stimulated acoustic relaxation emission of maize starch tablets. Mellin V; Salonen J; Laine E Int J Pharm; 2001 Jun; 220(1-2):85-90. PubMed ID: 11376970 [TBL] [Abstract][Full Text] [Related]
12. Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application. Wu H; Heilweil EJ; Hussain AS; Khan MA J Pharm Sci; 2008 Feb; 97(2):970-84. PubMed ID: 17722101 [TBL] [Abstract][Full Text] [Related]
13. Granule size distribution of tablets. Virtanen S; Antikainen O; Räikkönen H; Yliruusi J J Pharm Sci; 2010 Apr; 99(4):2061-9. PubMed ID: 19780134 [TBL] [Abstract][Full Text] [Related]
14. Formulation study of directly compressible chewable polymers containing ascorbic acid. Kása P; Jójárt I; Kelemen A; Pintye-Hódi K Pharm Dev Technol; 2013; 18(2):384-9. PubMed ID: 22229257 [TBL] [Abstract][Full Text] [Related]
15. Compressibility of tableting materials and properties of tablets with glyceryl behenate. Mužíková J; Muchová S; Komersová A; Lochař V Acta Pharm; 2015 Mar; 65(1):91-8. PubMed ID: 25781708 [TBL] [Abstract][Full Text] [Related]
16. Characterization of tableting properties measured with a multi-functional compaction instrument for several pharmaceutical excipients and actual tablet formulations. Osamura T; Takeuchi Y; Onodera R; Kitamura M; Takahashi Y; Tahara K; Takeuchi H Int J Pharm; 2016 Aug; 510(1):195-202. PubMed ID: 27184101 [TBL] [Abstract][Full Text] [Related]
17. Prediction of tablet characteristics from residual stress distribution estimated by the finite element method. Hayashi Y; Miura T; Shimada T; Onuki Y; Obata Y; Takayama K J Pharm Sci; 2013 Oct; 102(10):3678-86. PubMed ID: 23897300 [TBL] [Abstract][Full Text] [Related]
18. Air-coupled non-contact mechanical property determination of drug tablets. Akseli I; Cetinkaya C Int J Pharm; 2008 Jul; 359(1-2):25-34. PubMed ID: 18439773 [TBL] [Abstract][Full Text] [Related]
19. Real-time tablet formation monitoring with ultrasound measurements in eccentric single station tablet press. Leskinen JT; Simonaho SP; Hakulinen M; Ketolainen J Int J Pharm; 2013 Feb; 442(1-2):27-34. PubMed ID: 22985771 [TBL] [Abstract][Full Text] [Related]
20. Impact of micromeritic properties of an active pharmaceutical ingredient on its compaction behavior. Bindra DS; Desikan S Pharm Dev Technol; 2015 Mar; 20(2):129-38. PubMed ID: 24219704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]