These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30004019)

  • 1. A sequence-to-sequence model-based deep learning approach for recognizing activity of daily living for senior care.
    Zhu H; Chen H; Brown R
    J Biomed Inform; 2018 Aug; 84():148-158. PubMed ID: 30004019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HomeADL for adaptive ADL monitoring within smart homes.
    Hong X; Nugent CD; Finlay DD; Mulvenna M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3324-7. PubMed ID: 19163419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward real time detection of the basic living activity in home using a wearable sensor and smart home sensors.
    Bang S; Kim M; Song SK; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5200-3. PubMed ID: 19163889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-Shot Human Activity Recognition Using Non-Visual Sensors.
    Al Machot F; R Elkobaisi M; Kyamakya K
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic learning from incomplete data for recognition of activities of daily living in smart homes.
    Zhang S; McClean SI; Scotney BW
    IEEE Trans Inf Technol Biomed; 2012 May; 16(3):454-62. PubMed ID: 22411044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Activity Recognition from Body Sensor Data using Deep Learning.
    Hassan MM; Huda S; Uddin MZ; Almogren A; Alrubaian M
    J Med Syst; 2018 Apr; 42(6):99. PubMed ID: 29663090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the Dempster-Shafer theory of evidence with a revised lattice structure for activity recognition.
    Liao J; Bi Y; Nugent C
    IEEE Trans Inf Technol Biomed; 2011 Jan; 15(1):74-82. PubMed ID: 21075728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of activities of daily living in healthy subjects using two ad-hoc classifiers.
    Urwyler P; Rampa L; Stucki R; Büchler M; Müri R; Mosimann UP; Nef T
    Biomed Eng Online; 2015 Jun; 14():54. PubMed ID: 26048452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification.
    Awais M; Chiari L; Ihlen EAF; Helbostad JL; Palmerini L
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering-based ensemble learning for activity recognition in smart homes.
    Jurek A; Nugent C; Bi Y; Wu S
    Sensors (Basel); 2014 Jul; 14(7):12285-304. PubMed ID: 25014095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annotating smart environment sensor data for activity learning.
    Szewcyzk S; Dwan K; Minor B; Swedlove B; Cook D
    Technol Health Care; 2009; 17(3):161-9. PubMed ID: 19641255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of Activities of Daily Living with Egocentric Vision: A Review.
    Nguyen TH; Nebel JC; Florez-Revuelta F
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26751452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5G-enabled contactless multi-user presence and activity detection for independent assisted living.
    Ashleibta AM; Taha A; Khan MA; Taylor W; Tahir A; Zoha A; Abbasi QH; Imran MA
    Sci Rep; 2021 Sep; 11(1):17590. PubMed ID: 34475439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection abnormal pattern in activities of daily living using sequence alignment method.
    Jung HY; Park SH; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3320-3. PubMed ID: 19163418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model and algorithmic framework for detection and correction of cognitive errors.
    Feki MA; Biswas J; Tolstikov A
    Technol Health Care; 2009; 17(3):203-19. PubMed ID: 19641258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SemImput: Bridging Semantic Imputation with Deep Learning for Complex Human Activity Recognition.
    Razzaq MA; Cleland I; Nugent C; Lee S
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32414064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the quality of activities in a smart environment.
    Cook DJ; Schmitter-Edgecombe M
    Methods Inf Med; 2009; 48(5):480-5. PubMed ID: 19448886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning.
    Chung S; Lim J; Noh KJ; Kim G; Jeong H
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.