These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 30004032)

  • 1. Static and dynamic compact analytical model for junctionless nanowire transistors.
    Pavanello MA; Trevisoli R; Doria RT; de Souza M
    J Phys Condens Matter; 2018 Aug; 30(33):334002. PubMed ID: 30004032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal/nanowire contacts, quantum confinement, and their roles in the generation of new, gigantic actions in nanowire transistors.
    Mohammad SN
    Nanotechnology; 2013 Nov; 24(45):455201. PubMed ID: 24129340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the bias dependence of low frequency noise in single layer graphene FETs.
    Mavredakis N; Garcia Cortadella R; Bonaccini Calia A; Garrido JA; Jiménez D
    Nanoscale; 2018 Aug; 10(31):14947-14956. PubMed ID: 30047555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications.
    Nozaki D; Kunstmann J; Zörgiebel F; Weber WM; Mikolajick T; Cuniberti G
    Nanotechnology; 2011 Aug; 22(32):325703. PubMed ID: 21772070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge Based Current-Voltage Model for the Silicon on Insulator Junctionless Field-Effect Transistor.
    Jeong Y; Kang IM; Cho S; Park J; Shin H
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4920-4925. PubMed ID: 32126675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and analysis of vertical-channel gallium nitride (GaN) junctionless nanowire transistors (JNT).
    Seo JH; Yoon YJ; Lee HG; Yoo GM; Jo YW; Son DH; Lee JH; Cho ES; Cho S; Kang IM
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8130-5. PubMed ID: 25958486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of diameter variation on electrical characteristics of Schottky barrier indium arsenide nanowire field-effect transistors.
    Razavieh A; Mohseni PK; Jung K; Mehrotra S; Das S; Suslov S; Li X; Klimeck G; Janes DB; Appenzeller J
    ACS Nano; 2014 Jun; 8(6):6281-7. PubMed ID: 24848303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confinement-modulated junctionless nanowire transistors for logic circuits.
    Vaurette F; Leturcq R; Lepilliet S; Grandidier B; Stiévenard D
    Nanoscale; 2014 Nov; 6(22):13446-50. PubMed ID: 25297836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Potential-Based Compact Modeling of p-GaN Gate HEMTs.
    Wang J; Chen Z; You S; Bakeroot B; Liu J; Decoutere S
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33671856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Junctionless versus inversion-mode lateral semiconductor nanowire transistors.
    Veloso A; Matagne P; Simoen E; Kaczer B; Eneman G; Mertens H; Yakimets D; Parvais B; Mocuta D
    J Phys Condens Matter; 2018 Sep; 30(38):384002. PubMed ID: 30073974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The piezoresistive effect in n-type junctionless silicon nanowire transistors.
    Kang TK
    Nanotechnology; 2012 Nov; 23(47):475203. PubMed ID: 23111286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependences of the electrical properties on the diameter and the doping concentration of the Si nanowire field effect transistors with a Schottky metal-semiconductor contact.
    You JH; Lee SH; You CH; Yu YS; Kim TW
    J Nanosci Nanotechnol; 2010 May; 10(5):3609-13. PubMed ID: 20359010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material Synthesis and Device Aspects of Monolayer Tungsten Diselenide.
    Yao Z; Liu J; Xu K; Chow EKC; Zhu W
    Sci Rep; 2018 Mar; 8(1):5221. PubMed ID: 29588469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning of the electronic characteristics of ZnO nanowire field effect transistors by proton irradiation.
    Hong WK; Jo G; Sohn JI; Park W; Choe M; Wang G; Kahng YH; Welland ME; Lee T
    ACS Nano; 2010 Feb; 4(2):811-8. PubMed ID: 20112950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation for Electrical Performances of the Capacitorless Dynamic Random Access Memory Based on Junctionless FinFETs.
    Cho MS; Yoon YJ; Kim BG; Jung JH; Jang WD; Lee JH; Kang IM
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6755-6761. PubMed ID: 31027024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytic modeling of a depletion-mode cylindrical surrounding-gate nanowire field-effect transistor.
    Yu YS; Park HK
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5925-9. PubMed ID: 22966682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen plasma exposure effects on indium oxide nanowire transistors.
    Kim S; Delker C; Chen P; Zhou C; Ju S; Janes DB
    Nanotechnology; 2010 Apr; 21(14):145207. PubMed ID: 20234086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-gated silicon nanowire transistors in a single fabrication step.
    Colli A; Tahraoui A; Fasoli A; Kivioja JM; Milne WI; Ferrari AC
    ACS Nano; 2009 Jun; 3(6):1587-93. PubMed ID: 19425540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring and suppressing the kink effect of black phosphorus field-effect transistors operating in the saturation regime.
    Xia Y; Li G; Jiang B; Yang Z; Liu X; Xiao X; Flandre D; Wang C; Liu Y; Liao L
    Nanoscale; 2019 May; 11(21):10420-10428. PubMed ID: 31112194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.