These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3000420)

  • 1. Ultraviolet resonance Raman spectra of cytochrome c conformational states.
    Copeland RA; Spiro TG
    Biochemistry; 1985 Aug; 24(18):4960-8. PubMed ID: 3000420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet resonance Raman spectra of insulin and alpha-lactalbumin with 218- and 200-nm laser excitation.
    Rava RP; Spiro TG
    Biochemistry; 1985 Apr; 24(8):1861-5. PubMed ID: 3893540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins.
    Lednev IK; Ermolenkov VV; He W; Xu M
    Anal Bioanal Chem; 2005 Jan; 381(2):431-7. PubMed ID: 15625596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary and tertiary structure of the A-state of cytochrome c from resonance Raman spectroscopy.
    Jordan T; Eads JC; Spiro TG
    Protein Sci; 1995 Apr; 4(4):716-28. PubMed ID: 7613469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic strength dependence of cytochrome c structure and Trp-59 H/D exchange from ultraviolet resonance Raman spectroscopy.
    Liu GY; Grygon CA; Spiro TG
    Biochemistry; 1989 Jun; 28(12):5046-50. PubMed ID: 2548599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemically induced conformational changes in cytochrome c monitored by Fourier transform infrared difference spectroscopy: influence of temperature, pH, and electrode surfaces.
    Schlereth DD; Mäntele W
    Biochemistry; 1993 Feb; 32(4):1118-26. PubMed ID: 8381024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary structure determination in proteins from deep (192-223-nm) ultraviolet Raman spectroscopy.
    Copeland RA; Spiro TG
    Biochemistry; 1987 Apr; 26(8):2134-9. PubMed ID: 3620443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediacy of poly(L-proline) II and beta-strand conformations in poly(L-lysine) beta-sheet formation probed by temperature-jump/UV resonance Raman spectroscopy.
    JiJi RD; Balakrishnan G; Hu Y; Spiro TG
    Biochemistry; 2006 Jan; 45(1):34-41. PubMed ID: 16388578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV raman examination of alpha-helical peptide water hydrogen bonding.
    Pimenov KV; Bykov SV; Mikhonin AV; Asher SA
    J Am Chem Soc; 2005 Mar; 127(9):2840-1. PubMed ID: 15740105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of conformational heterogeneity in the heme pocket of ferricytochrome c using high field proton nuclear magnetic resonance spectroscopy.
    Burns PD; La Mar GN
    J Biol Chem; 1981 May; 256(10):4934-9. PubMed ID: 6262309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR-monitored thermal titration reveals different mechanisms for the alkaline isomerization of tuna compared to horse and bovine cytochromes c.
    Filosa A; Ismail AA; English AM
    J Biol Inorg Chem; 1999 Dec; 4(6):717-26. PubMed ID: 10631603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyanion binding to cytochrome c probed by resonance Raman spectroscopy.
    Hildebrandt P
    Biochim Biophys Acta; 1990 Sep; 1040(2):175-86. PubMed ID: 2169306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet resonance Raman examination of horse apomyoglobin acid unfolding intermediates.
    Chi Z; Asher SA
    Biochemistry; 1999 Jun; 38(26):8196-203. PubMed ID: 10387065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure.
    Chi Z; Chen XG; Holtz JS; Asher SA
    Biochemistry; 1998 Mar; 37(9):2854-64. PubMed ID: 9485436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopic studies of dimyristoylphosphatidic acid and its interactions with ferricytochrome c in cationic binary and ternary lipid-protein complexes.
    Vincent JS; Levin IW
    Biophys J; 1991 May; 59(5):1007-21. PubMed ID: 1651120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin.
    Chi Z; Asher SA
    Biochemistry; 1998 Mar; 37(9):2865-72. PubMed ID: 9485437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet resonance Raman and absorption difference spectroscopy of myoglobins: titration behavior of individual tyrosine residues.
    Asher SA; Larkin PJ; Teraoka J
    Biochemistry; 1991 Jun; 30(24):5944-54. PubMed ID: 2043634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of multiple amino acid substitutions on the polypeptide backbone of tuna and horse cytochromes c.
    Gao Y; Lee AD; Williams RJ; Williams G
    Eur J Biochem; 1989 Jun; 182(1):57-65. PubMed ID: 2543575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV Raman demonstrates that alpha-helical polyalanine peptides melt to polyproline II conformations.
    Asher SA; Mikhonin AV; Bykov S
    J Am Chem Soc; 2004 Jul; 126(27):8433-40. PubMed ID: 15238000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.