These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 30004345)
1. A Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting model to predict monthly malaria cases in KwaZulu-Natal, South Africa. Ebhuoma O; Gebreslasie M; Magubane L S Afr Med J; 2018 Jun; 108(7):573-578. PubMed ID: 30004345 [TBL] [Abstract][Full Text] [Related]
2. Modeling malaria control intervention effect in KwaZulu-Natal, South Africa using intervention time series analysis. Ebhuoma O; Gebreslasie M; Magubane L J Infect Public Health; 2017; 10(3):334-338. PubMed ID: 28330701 [TBL] [Abstract][Full Text] [Related]
3. A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo, Brazil. Martinez EZ; Silva EA; Fabbro AL Rev Soc Bras Med Trop; 2011; 44(4):436-40. PubMed ID: 21860888 [TBL] [Abstract][Full Text] [Related]
4. SARFIMA model prediction for infectious diseases: application to hemorrhagic fever with renal syndrome and comparing with SARIMA. Qi C; Zhang D; Zhu Y; Liu L; Li C; Wang Z; Li X BMC Med Res Methodol; 2020 Sep; 20(1):243. PubMed ID: 32993517 [TBL] [Abstract][Full Text] [Related]
5. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan. Wangdi K; Singhasivanon P; Silawan T; Lawpoolsri S; White NJ; Kaewkungwal J Malar J; 2010 Sep; 9():251. PubMed ID: 20813066 [TBL] [Abstract][Full Text] [Related]
6. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. Mao Q; Zhang K; Yan W; Cheng C J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253 [TBL] [Abstract][Full Text] [Related]
7. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq. Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036 [TBL] [Abstract][Full Text] [Related]
8. Forecasting and prediction of scorpion sting cases in Biskra province, Algeria, using a seasonal autoregressive integrated moving average model. Selmane S; L'Hadj M Epidemiol Health; 2016; 38():e2016044. PubMed ID: 27866407 [TBL] [Abstract][Full Text] [Related]
9. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model. Zhang X; Pang Y; Cui M; Stallones L; Xiang H Ann Epidemiol; 2015 Feb; 25(2):101-6. PubMed ID: 25467006 [TBL] [Abstract][Full Text] [Related]
10. Forecasting zoonotic cutaneous leishmaniasis using meteorological factors in eastern Fars province, Iran: a SARIMA analysis. Tohidinik HR; Mohebali M; Mansournia MA; Niakan Kalhori SR; Ali-Akbarpour M; Yazdani K Trop Med Int Health; 2018 Aug; 23(8):860-869. PubMed ID: 29790236 [TBL] [Abstract][Full Text] [Related]
11. A Hybrid Approach Based on Seasonal Autoregressive Integrated Moving Average and Neural Network Autoregressive Models to Predict Scorpion Sting Incidence in El Oued Province, Algeria, From 2005 to 2020. Zenia S; L'Hadj M; Selmane S J Res Health Sci; 2023 Sep; 23(3):e00586. PubMed ID: 38315901 [TBL] [Abstract][Full Text] [Related]
12. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Tian CW; Wang H; Luo XM Epidemiol Infect; 2019 Jan; 147():e82. PubMed ID: 30868999 [TBL] [Abstract][Full Text] [Related]
13. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis. Adeola AM; Botai JO; Rautenbach H; Adisa OM; Ncongwane KP; Botai CM; Adebayo-Ojo TC Int J Environ Res Public Health; 2017 Nov; 14(11):. PubMed ID: 29117114 [TBL] [Abstract][Full Text] [Related]
14. Forecasting the number of zoonotic cutaneous leishmaniasis cases in south of Fars province, Iran using seasonal ARIMA time series method. Sharafi M; Ghaem H; Tabatabaee HR; Faramarzi H Asian Pac J Trop Med; 2017 Jan; 10(1):79-86. PubMed ID: 28107871 [TBL] [Abstract][Full Text] [Related]
15. Climate based malaria forecasting system for Andhra Pradesh, India. Mopuri R; Kakarla SG; Mutheneni SR; Kadiri MR; Kumaraswamy S J Parasit Dis; 2020 Sep; 44(3):497-510. PubMed ID: 32801501 [TBL] [Abstract][Full Text] [Related]
16. Time series analysis and forecasting of the number of canine rabies confirmed cases in Thailand based on national-level surveillance data. Punyapornwithaya V; Thanapongtharm W; Jainonthee C; Chinsorn P; Sagarasaeranee O; Salvador R; Arjkumpa O Front Vet Sci; 2023; 10():1294049. PubMed ID: 38094496 [TBL] [Abstract][Full Text] [Related]
17. Status of malaria and its implications for elimination in an endemic province of South Africa: retrospective analysis. Tsoka-Gwegweni JM Pan Afr Med J; 2022; 41():275. PubMed ID: 35784598 [TBL] [Abstract][Full Text] [Related]
18. Epidemiological Trends of Malaria in Five Years and under Children of Nsanje District in Malawi, 2015-2019. Gondwe T; Yang Y; Yosefe S; Kasanga M; Mulula G; Luwemba MP; Jere A; Daka V; Mudenda T Int J Environ Res Public Health; 2021 Dec; 18(23):. PubMed ID: 34886507 [TBL] [Abstract][Full Text] [Related]
19. Forecasting incidence of dengue in Rajasthan, using time series analyses. Bhatnagar S; Lal V; Gupta SD; Gupta OP Indian J Public Health; 2012; 56(4):281-5. PubMed ID: 23354138 [TBL] [Abstract][Full Text] [Related]
20. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011-2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. Liu H; Li C; Shao Y; Zhang X; Zhai Z; Wang X; Qi X; Wang J; Hao Y; Wu Q; Jiao M J Infect Public Health; 2020 Feb; 13(2):287-294. PubMed ID: 31953020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]