BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 30004388)

  • 1. Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink.
    Ahlfeld T; Doberenz F; Kilian D; Vater C; Korn P; Lauer G; Lode A; Gelinsky M
    Biofabrication; 2018 Jul; 10(4):045002. PubMed ID: 30004388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs.
    Ahlfeld T; Cubo-Mateo N; Cometta S; Guduric V; Vater C; Bernhardt A; Akkineni AR; Lode A; Gelinsky M
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12557-12572. PubMed ID: 32092249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs.
    Liu S; Kilian D; Ahlfeld T; Hu Q; Gelinsky M
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36735961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Bioprinting of osteochondral tissue substitutes - in vitro-chondrogenesis in multi-layered mineralized constructs.
    Kilian D; Ahlfeld T; Akkineni AR; Bernhardt A; Gelinsky M; Lode A
    Sci Rep; 2020 May; 10(1):8277. PubMed ID: 32427838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel.
    Ahlfeld T; Akkineni AR; Förster Y; Köhler T; Knaack S; Gelinsky M; Lode A
    Ann Biomed Eng; 2017 Jan; 45(1):224-236. PubMed ID: 27384939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D plotting of growth factor loaded calcium phosphate cement scaffolds.
    Akkineni AR; Luo Y; Schumacher M; Nies B; Lode A; Gelinsky M
    Acta Biomater; 2015 Nov; 27():264-274. PubMed ID: 26318366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Plotted Biphasic Bone Scaffolds for Growth Factor Delivery: Biological Characterization In Vitro and In Vivo.
    Ahlfeld T; Schuster FP; Förster Y; Quade M; Akkineni AR; Rentsch C; Rammelt S; Gelinsky M; Lode A
    Adv Healthc Mater; 2019 Apr; 8(7):e1801512. PubMed ID: 30838778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds.
    Seidel J; Ahlfeld T; Adolph M; Kümmritz S; Steingroewer J; Krujatz F; Bley T; Gelinsky M; Lode A
    Biofabrication; 2017 Nov; 9(4):045011. PubMed ID: 28837040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a clay based bioink for 3D cell printing for skeletal application.
    Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M
    Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues.
    Freeman FE; Kelly DJ
    Sci Rep; 2017 Dec; 7(1):17042. PubMed ID: 29213126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology.
    Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R
    Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions.
    Lode A; Meissner K; Luo Y; Sonntag F; Glorius S; Nies B; Vater C; Despang F; Hanke T; Gelinsky M
    J Tissue Eng Regen Med; 2014 Sep; 8(9):682-93. PubMed ID: 22933381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.
    Luo Y; Lin X; Chen B; Wei X
    Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions.
    Schütz K; Placht AM; Paul B; Brüggemeier S; Gelinsky M; Lode A
    J Tissue Eng Regen Med; 2017 May; 11(5):1574-1587. PubMed ID: 26202781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies.
    Chimene D; Kaunas R; Gaharwar AK
    Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair.
    Weir MD; Xu HH
    Acta Biomater; 2010 Oct; 6(10):4118-26. PubMed ID: 20451676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.