These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30004459)

  • 1. Vibration Analysis of Vacancy Defected Graphene Sheets by Monte Carlo Based Finite Element Method.
    Chu L; Shi J; Souza de Cursi E
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30004459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method.
    Chu L; Shi J; Ben S
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Random Porosities in Resonant Frequencies of Graphene Based on the Monte Carlo Stochastic Finite Element Model.
    Chu L; Shi J; Yu Y; Souza De Cursi E
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of Random Atomic Defects on Critical Buckling Stress of Graphene under Different Boundary Conditions.
    Shi J; Chu L; Yu Z; Souza de Cursi E
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoresonator vibrational behaviour analysis of single- and double-layer graphene with atomic vacancy and pinhole defects.
    Makwana M; Patel AM
    J Mol Model; 2023 Apr; 29(5):149. PubMed ID: 37074494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The correlation between graphene characteristic parameters and resonant frequencies by Monte Carlo based stochastic finite element model.
    Chu L; Shi J; de Cursi ES
    Sci Rep; 2021 Nov; 11(1):22962. PubMed ID: 34824351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Uncertainty Propagation for Carbon Atomic Interactions in Graphene under Resonant Vibration Based on Stochastic Finite Element Model.
    Shi J; Chu L; Ma C; Braun R
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Vacancy Defects on the Vibration Frequency of Graphene Nanoribbons.
    Guo H; Wang J
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Fingerprints of Resonant Frequency for Atomic Vacancy Defect Identification in Graphene.
    Chu L; Shi J; Souza de Cursi E
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method.
    Shi J; Chu L; Braun R
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31085983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic study of mono/multi-atomic vacancy defects on the mechanical characterization of boron-doped graphene sheets.
    Setoodeh AR; Badjian H; Jahromi HS
    J Mol Model; 2017 Jan; 23(1):2. PubMed ID: 27924412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free and Forced Vibration Analyses of Functionally Graded Graphene-Nanoplatelet-Reinforced Beams Based on the Finite Element Method.
    Zhang Y; Teng J; Huang J; Zhou K; Huang L
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation and Comparison of Monte Carlo and Finite Element Method in Forward Modeling for Near Infrared Optical Tomography.
    Jiang J; Ren W; Isler H; Kalyanov A; Lindner S; Aldo DCM; Rudin M; Wolf M
    Adv Exp Med Biol; 2020; 1232():307-313. PubMed ID: 31893425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamic Simulation of Defective Graphene Nanoribbons for Tension and Vibration.
    Mao JJ; Liu S; Li L; Chen J
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacancy diffusion and coalescence in graphene directed by defect strain fields.
    Trevethan T; Latham CD; Heggie MI; Briddon PR; Rayson MJ
    Nanoscale; 2014 Mar; 6(5):2978-86. PubMed ID: 24487384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure.
    Jin T; Stanciulescu I
    Biomech Model Mechanobiol; 2016 Aug; 15(4):817-30. PubMed ID: 26342926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical molecular dynamic simulation of monolayer graphene with consideration of structural defects.
    Ranjbartoreh AR; Wang G
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1398-401. PubMed ID: 22629965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels.
    Zhang R; Verkruysse W; Aguilar G; Nelson JS
    Phys Med Biol; 2005 Sep; 50(17):4075-86. PubMed ID: 16177531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-Vacancy Controlled Friction on Graphene: The Enhancement of Atomic Pinning.
    Shen B; Lin Q; Chen S; Huang Z; Ji Z; Cao A; Zhang Z
    Langmuir; 2019 Oct; 35(40):12898-12907. PubMed ID: 31513424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.