BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3000447)

  • 1. Visualization of lactotransferrin brush-border receptors by ligand-blotting.
    Mazurier J; Montreuil J; Spik G
    Biochim Biophys Acta; 1985 Dec; 821(3):453-60. PubMed ID: 3000447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactotransferrin receptor of mouse small-intestinal brush border. Binding characteristics of membrane-bound and triton X-100-solubilized forms.
    Hu WL; Mazurier J; Sawatzki G; Montreuil J; Spik G
    Biochem J; 1988 Jan; 249(2):435-41. PubMed ID: 2829858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron uptake from transferrin and lactoferrin by rat intestinal brush-border membrane vesicles.
    Kawakami H; Dosako S; Lönnerdal B
    Am J Physiol; 1990 Apr; 258(4 Pt 1):G535-41. PubMed ID: 2333967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron binding proteins and influx of iron across the duodenal brush border. Evidence for specific lactotransferrin receptors in the human intestine.
    Cox TM; Mazurier J; Spik G; Montreuil J; Peters TJ
    Biochim Biophys Acta; 1979 Nov; 588(1):120-8. PubMed ID: 227471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific binding of lactoferrin to brush-border membrane: ontogeny and effect of glycan chain.
    Davidson LA; Lönnerdal B
    Am J Physiol; 1988 Apr; 254(4 Pt 1):G580-5. PubMed ID: 2833117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe-saturation and proteolysis of human lactoferrin: effect on brush-border receptor-mediated uptake of Fe and Mn.
    Davidson LA; Lönnerdal B
    Am J Physiol; 1989 Dec; 257(6 Pt 1):G930-4. PubMed ID: 2558579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and partial characterization of a lactotransferrin receptor from mouse intestinal brush border.
    Hu WL; Mazurier J; Montreuil J; Spik G
    Biochemistry; 1990 Jan; 29(2):535-41. PubMed ID: 2154249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular interactions between human lactotransferrin and the phytohemagglutinin-activated human lymphocyte lactotransferrin receptor lie in two loop-containing regions of the N-terminal domain I of human lactotransferrin.
    Legrand D; Mazurier J; Elass A; Rochard E; Vergoten G; Maes P; Montreuil J; Spik G
    Biochemistry; 1992 Sep; 31(38):9243-51. PubMed ID: 1327110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The N-terminal domain I of human lactotransferrin binds specifically to phytohemagglutinin-stimulated peripheral blood human lymphocyte receptors.
    Rochard E; Legrand D; Mazurier J; Montreuil J; Spik G
    FEBS Lett; 1989 Sep; 255(1):201-4. PubMed ID: 2551729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of goat's-milk folate-binding protein on transport of 5-methyltetrahydrofolate in neonatal-goat small intestinal brush-border-membrane vesicles.
    Salter DN; Blakeborough P
    Br J Nutr; 1988 May; 59(3):497-507. PubMed ID: 3395609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes.
    Kawakami H; Lönnerdal B
    Am J Physiol; 1991 Nov; 261(5 Pt 1):G841-6. PubMed ID: 1659221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactoferrin receptors in intestinal brush border membranes.
    Lönnerdal B
    Adv Exp Med Biol; 1994; 357():171-5. PubMed ID: 7762428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Role of glycans in the binding of human serotransferrin and lactotransferrin to human alveolar macrophages].
    Goavec M; Mazurier J; Montreuil J; Spik G
    C R Acad Sci III; 1985; 301(16):689-94. PubMed ID: 3935281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium uptake by intestinal brush border membrane vesicles. Comparison with in vivo calcium transport.
    Schedl HP; Wilson HD
    J Clin Invest; 1985 Nov; 76(5):1871-8. PubMed ID: 2997294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal absorption of dipeptides and beta-lactam antibiotics. II. Purification of the binding protein for dipeptides and beta-lactam antibiotics from rabbit small intestinal brush border membranes.
    Kramer W; Gutjahr U; Girbig F; Leipe I
    Biochim Biophys Acta; 1990 Nov; 1030(1):50-9. PubMed ID: 2265192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for interactions between the 30 kDa N- and 50 kDa C-terminal tryptic fragments of human lactotransferrin.
    Legrand D; Mazurier J; Aubert JP; Loucheux-Lefebvre MH; Montreuil J; Spik G
    Biochem J; 1986 Jun; 236(3):839-44. PubMed ID: 3790094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct photoaffinity labelling of binding proteins for beta-lactam antibiotics in rabbit intestinal brush border membranes with [3H]benzylpenicillin.
    Kramer W; Girbig F; Leipe I; Petzoldt E
    Biochem Pharmacol; 1988 Jun; 37(12):2427-35. PubMed ID: 3390206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactoferrin-receptor interaction. Effect of surface exposed histidine residues.
    Iyer S; Yip TT; Hutchens TW; Lonnerdal B
    Adv Exp Med Biol; 1994; 357():245-52. PubMed ID: 7762439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of decreased Na+-dependent D-glucose transport in brush-border membrane vesicles from rabbit kidneys with experimental Fanconi syndrome.
    Orita Y; Fukuhara Y; Yanase M; Okada N; Nakanishi T; Horio M; Moriyama T; Ando A; Abe H
    Biochim Biophys Acta; 1984 Apr; 771(2):195-200. PubMed ID: 6538438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-sensitive transport of Fe2+ across purified brush-border membrane from mouse intestine.
    Simpson RJ; Peters TJ
    Biochim Biophys Acta; 1986 Mar; 856(1):109-14. PubMed ID: 3955029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.