BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 30004521)

  • 1. 3D photoacoustic imaging using Hadamard-bias encoding with a crossed electrode relaxor array.
    Ceroici C; Latham K; Chee R; Greenlay B; Barber Q; Brown JA; Zemp R
    Opt Lett; 2018 Jul; 43(14):3425-3428. PubMed ID: 30004521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Orthogonal Row-Column Electronic Scanning (FORCES) Experiments and Comparisons.
    Ceroicim C; Lathammm K; Greenlaym B; Brownmm JA; Zempm R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; ():. PubMed ID: 30908213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New 3-D Imaging Technique Integrating Ultrafast Compounding, Hadamard Encoding, and Reconfigurable Fresnel Lensing.
    Latham K; Samson C; Brown J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1618-1627. PubMed ID: 33284754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Azimuth and Fresnel Elevation Compounding: A Fast 3-D Imaging Technique for Crossed-Electrode Arrays.
    Latham K; Ceroici C; Samson CA; Zemp RJ; Brown JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1657-1668. PubMed ID: 29994704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Orthogonal Row-Column Electronic Scanning With Top-Orthogonal-to-Bottom Electrode Arrays.
    Ceroici C; Harrison T; Zemp RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jun; 64(6):1009-1014. PubMed ID: 28358680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 30-MHz, 3-D Imaging, Forward-Looking Miniature Endoscope Based on a 128-Element Relaxor Array.
    Latham K; Samson C; Woodacre J; Brown J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1261-1271. PubMed ID: 32997625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-sequence spatially-encoded synthetic aperture ultrasound imaging.
    Harrison T; Sampaleanu A; Zemp RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):886-90. PubMed ID: 24801516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Voltage Bias-Switching Electronics for Volumetric Imaging using Electrostrictive Row-Column Arrays.
    Ilkhechi AK; Palamar R; Sobhani MR; Dahunsi D; Ceroici C; Ghavami M; Brown J; Zemp R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; PP():. PubMed ID: 37027674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Orthogonal Row-Column Electronic Scanning (uFORCES) With Bias-Switchable Top-Orthogonal-to-Bottom Electrode 2-D Arrays.
    Sobhani MR; Ghavami M; Ilkhechi AK; Brown J; Zemp R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2823-2836. PubMed ID: 35853047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delay-encoded transmission and image reconstruction method in synthetic transmit aperture imaging.
    Gong P; Kolios MC; Xu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1745-56. PubMed ID: 26470037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hadamard multiplexing in laser ultrasonics.
    Rousseau G; Blouin A
    Opt Express; 2012 Nov; 20(23):25798-816. PubMed ID: 23187397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Top-orthogonal-to-bottom-electrode (TOBE) CMUT arrays for 3-D ultrasound imaging.
    Sampaleanu A; Zhang P; Kshirsagar A; Moussa W; Zemp RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):266-76. PubMed ID: 24474133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TOBE-Costas Arrays for Fast High-Resolution 3-D Power Doppler Imaging.
    Masoumi MH; Kaddoura T; Zemp R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jun; 71(6):648-658. PubMed ID: 38743556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal-to-noise ratio enhancement of a Hadamard transform spectrometer using a two-dimensional slit-array.
    Chi M; Wu Y; Qian F; Hao P; Zhou W; Liu Y
    Appl Opt; 2017 Sep; 56(25):7188-7193. PubMed ID: 29047980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved signal-to-noise ratio in hybrid 2-D arrays: experimental confirmation.
    Emery CD; Smith SW
    Ultrason Imaging; 1997 Apr; 19(2):93-111. PubMed ID: 9381632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top orthogonal to bottom electrode (TOBE) 2-D CMUT arrays for 3-D photoacoustic imaging.
    Chee R; Sampaleanu A; Rishi D; Zemp R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Aug; 61(8):1393-5. PubMed ID: 25073146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoacoustic imaging using the Hadamard transform technique.
    Coufal H; Moller U; Schneider S
    Appl Opt; 1982 Jan; 21(1):116-20. PubMed ID: 20372412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoacoustic Wavefront Shaping with High Signal to Noise Ratio for Light Focusing Through Scattering Media.
    Sun J; Zhang B; Feng Q; He H; Ding Y; Liu Q
    Sci Rep; 2019 Mar; 9(1):4328. PubMed ID: 30867506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging quality improvement of ghost imaging in scattering medium based on Hadamard modulated light field.
    Gao Z; Yin J; Bai Y; Fu X
    Appl Opt; 2020 Sep; 59(27):8472-8477. PubMed ID: 32976433
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.