These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30004663)

  • 1. Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint.
    Senkovskiy BV; Usachov DY; Fedorov AV; Marangoni T; Haberer D; Tresca C; Profeta G; Caciuc V; Tsukamoto S; Atodiresei N; Ehlen N; Chen C; Avila J; Asensio MC; Varykhalov AY; Nefedov A; Wöll C; Kim TK; Hoesch M; Fischer FR; Grüneis A
    ACS Nano; 2018 Aug; 12(8):7571-7582. PubMed ID: 30004663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons.
    Talirz L; Söde H; Dumslaff T; Wang S; Sanchez-Valencia JR; Liu J; Shinde P; Pignedoli CA; Liang L; Meunier V; Plumb NC; Shi M; Feng X; Narita A; Müllen K; Fasel R; Ruffieux P
    ACS Nano; 2017 Feb; 11(2):1380-1388. PubMed ID: 28129507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration Dependence of Dopant Electronic Structure in Bottom-up Graphene Nanoribbons.
    Pedramrazi Z; Chen C; Zhao F; Cao T; Nguyen GD; Omrani AA; Tsai HZ; Cloke RR; Marangoni T; Rizzo DJ; Joshi T; Bronner C; Choi WW; Fischer FR; Louie SG; Crommie MF
    Nano Lett; 2018 Jun; 18(6):3550-3556. PubMed ID: 29851493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman Spectrum of Doped Epitaxial Graphene at the Lifshitz Transition.
    Hell MG; Ehlen N; Senkovskiy BV; Hasdeo EH; Fedorov A; Dombrowski D; Busse C; Michely T; di Santo G; Petaccia L; Saito R; Grüneis A
    Nano Lett; 2018 Sep; 18(9):6045-6056. PubMed ID: 30157652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and transport properties of boron-doped graphene nanoribbons.
    Martins TB; Miwa RH; da Silva AJ; Fazzio A
    Phys Rev Lett; 2007 May; 98(19):196803. PubMed ID: 17677646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons.
    Cloke RR; Marangoni T; Nguyen GD; Joshi T; Rizzo DJ; Bronner C; Cao T; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2015 Jul; 137(28):8872-5. PubMed ID: 26153349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution.
    Carbonell-Sanromà E; Brandimarte P; Balog R; Corso M; Kawai S; Garcia-Lekue A; Saito S; Yamaguchi S; Meyer E; Sánchez-Portal D; Pascual JI
    Nano Lett; 2017 Jan; 17(1):50-56. PubMed ID: 28073274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons.
    Javan M; Jorjani R; Soltani AR
    J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Optical Properties of Doped and Undoped 9-Armchair Graphene Nanoribbons in Dispersion.
    Lindenthal S; Fazzi D; Zorn NF; El Yumin AA; Settele S; Weidinger B; Blasco E; Zaumseil J
    ACS Nano; 2023 Sep; 17(18):18240-18252. PubMed ID: 37695780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroscopy of boron-doped single-layer graphene.
    Kim YA; Fujisawa K; Muramatsu H; Hayashi T; Endo M; Fujimori T; Kaneko K; Terrones M; Behrends J; Eckmann A; Casiraghi C; Novoselov KS; Saito R; Dresselhaus MS
    ACS Nano; 2012 Jul; 6(7):6293-300. PubMed ID: 22695033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermi-Level Engineering of Nitrogen Core-Doped Armchair Graphene Nanoribbons.
    Wen ECH; Jacobse PH; Jiang J; Wang Z; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2023 Sep; 145(35):19338-19346. PubMed ID: 37611208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
    Lazar P; Zbořil R; Pumera M; Otyepka M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14231-5. PubMed ID: 24912566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doping of graphene induced by boron/silicon substrate.
    Dianat A; Liao Z; Gall M; Zhang T; Gutierrez R; Zschech E; Cuniberti G
    Nanotechnology; 2017 May; 28(21):215701. PubMed ID: 28402285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High p doped and robust band structure in Mg-doped hexagonal boron nitride.
    Khalil L; Ernandes C; Avila J; Rousseau A; Dudin P; Zhigadlo ND; Cassabois G; Gil B; Oehler F; Chaste J; Ouerghi A
    Nanoscale Adv; 2023 Jun; 5(12):3225-3232. PubMed ID: 37325527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping.
    Navarro-Santos P; Ricardo-Chávez JL; Reyes-Reyes M; Rivera JL; López-Sandoval R
    J Phys Condens Matter; 2010 Dec; 22(50):505302. PubMed ID: 21406793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy.
    Deniz O; Sánchez-Sánchez C; Dumslaff T; Feng X; Narita A; Müllen K; Kharche N; Meunier V; Fasel R; Ruffieux P
    Nano Lett; 2017 Apr; 17(4):2197-2203. PubMed ID: 28301723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen adsorption on boron doped graphene: an ab initio study.
    Miwa RH; Martins TB; Fazzio A
    Nanotechnology; 2008 Apr; 19(15):155708. PubMed ID: 21825632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.