BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 30004686)

  • 1. Interplay of Through-Bond Hyperfine and Substituent Effects on the NMR Chemical Shifts in Ru(III) Complexes.
    Jeremias L; Novotný J; Repisky M; Komorovsky S; Marek R
    Inorg Chem; 2018 Aug; 57(15):8748-8759. PubMed ID: 30004686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-Spin Structure and Metal-Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts.
    Bora PL; Novotný J; Ruud K; Komorovsky S; Marek R
    J Chem Theory Comput; 2019 Jan; 15(1):201-214. PubMed ID: 30485092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paramagnetic Effects in NMR Spectroscopy of Transition-Metal Complexes: Principles and Chemical Concepts.
    Novotny J; Komorovsky S; Marek R
    Acc Chem Res; 2024 May; 57(10):1467-1477. PubMed ID: 38687879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines.
    Novotný J; Přichystal D; Sojka M; Komorovsky S; Nečas M; Marek R
    Inorg Chem; 2018 Jan; 57(2):641-652. PubMed ID: 29185727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations.
    Novotný J; Sojka M; Komorovsky S; Nečas M; Marek R
    J Am Chem Soc; 2016 Jul; 138(27):8432-45. PubMed ID: 27312929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nature of NMR Shifts in Paramagnetic Octahedral Ru(III) Complexes with Axial Pyridine-Based Ligands.
    Chyba J; Hruzíková A; Knor M; Pikulová P; Marková K; Novotný J; Marek R
    Inorg Chem; 2023 Feb; 62(8):3381-3394. PubMed ID: 36763803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal and Substituent Effects on Paramagnetic NMR Shifts in Transition-Metal Complexes.
    Novotný J; Jeremias L; Nimax P; Komorovsky S; Heinmaa I; Marek R
    Inorg Chem; 2021 Jul; 60(13):9368-9377. PubMed ID: 34133172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems.
    Rouf SA; Mareš J; Vaara J
    J Chem Theory Comput; 2017 Aug; 13(8):3731-3745. PubMed ID: 28636359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 140 H/D isotopomers identified by long-range NMR hyperfine shifts in ruthenium(III) ammine complexes. Hyperconjugation in Ru-NH3 bonding.
    Laidlaw WM; Denning RG; Green JC; Boyd J; Harmer J; Thompson AL
    Inorg Chem; 2013 Jun; 52(12):7280-94. PubMed ID: 23697337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol.
    Tsipis AC; Karapetsas IN
    Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches.
    Vícha J; Novotný J; Straka M; Repisky M; Ruud K; Komorovsky S; Marek R
    Phys Chem Chem Phys; 2015 Oct; 17(38):24944-55. PubMed ID: 26344822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory.
    Autschbach J; Patchkovskii S; Pritchard B
    J Chem Theory Comput; 2011 Jul; 7(7):2175-88. PubMed ID: 26606487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.
    Komorovsky S; Repisky M; Ruud K; Malkina OL; Malkin VG
    J Phys Chem A; 2013 Dec; 117(51):14209-19. PubMed ID: 24283465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR Investigation of beta-Substituted High-Spin and Low-Spin Iron(III) Tetraphenylporphyrins.
    Wojaczynski J; Latos-Grazynski L; Hrycyk W; Pacholska E; Rachlewicz K; Szterenberg L
    Inorg Chem; 1996 Nov; 35(23):6861-6872. PubMed ID: 11666854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of Relativistic DFT Approaches to the Calculation of NMR Chemical Shifts in Square-Planar Pt(2+) and Au(3+) Complexes.
    Pawlak T; Munzarová ML; Pazderski L; Marek R
    J Chem Theory Comput; 2011 Dec; 7(12):3909-23. PubMed ID: 26598337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling.
    Novotný J; Vícha J; Bora PL; Repisky M; Straka M; Komorovsky S; Marek R
    J Chem Theory Comput; 2017 Aug; 13(8):3586-3601. PubMed ID: 28682632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1H NMR, electron paramagnetic resonance, and density functional theory study of dinuclear pentaammineruthenium dicyanamidobenzene complexes.
    Naklicki ML; Gorelsky SI; Kaim W; Sarkar B; Crutchley RJ
    Inorg Chem; 2012 Feb; 51(3):1400-7. PubMed ID: 22220947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paramagnetic NMR of Phenolic Oxime Copper Complexes: A Joint Experimental and Density Functional Study.
    Bühl M; Ashbrook SE; Dawson DM; Doyle RA; Hrobárik P; Kaupp M; Smellie IA
    Chemistry; 2016 Oct; 22(43):15328-15339. PubMed ID: 27597644
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.