These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 30004772)

  • 1. Dynamic Control of the Coupling between Dark and Bright Excitons with Vibrational Strain.
    Ohta R; Okamoto H; Tawara T; Gotoh H; Yamaguchi H
    Phys Rev Lett; 2018 Jun; 120(26):267401. PubMed ID: 30004772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical fingerprint of bright and dark localized excitonic states in atomically thin 2D materials.
    Feierabend M; Brem S; Malic E
    Phys Chem Chem Phys; 2019 Dec; 21(47):26077-26083. PubMed ID: 31746874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling.
    Ortner G; Bayer M; Larionov A; Timofeev VB; Forchel A; Lyanda-Geller YB; Reinecke TL; Hawrylak P; Fafard S; Wasilewski Z
    Phys Rev Lett; 2003 Feb; 90(8):086404. PubMed ID: 12633447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity.
    Larionova Y; Stolz W; Weiss CO
    Opt Lett; 2008 Feb; 33(4):321-3. PubMed ID: 18278097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.
    Zhou W; Nakamura D; Liu H; Kataura H; Takeyama S
    Sci Rep; 2014 Nov; 4():6999. PubMed ID: 25385545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark excitons and tunable optical gap in graphene nanodots.
    Zhang Y; Sheng W; Li Y
    Phys Chem Chem Phys; 2017 Aug; 19(34):23131-23137. PubMed ID: 28820198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelastic coupling in gallium arsenide optomechanical disk resonators.
    Baker C; Hease W; Nguyen DT; Andronico A; Ducci S; Leo G; Favero I
    Opt Express; 2014 Jun; 22(12):14072-86. PubMed ID: 24977505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides.
    Yu H; Liu GB; Gong P; Xu X; Yao W
    Nat Commun; 2014 May; 5():3876. PubMed ID: 24821438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical actuation of a micromechanical photodiode via the photovoltaic-piezoelectric effect.
    Rampal A; Kleiman RN
    Microsyst Nanoeng; 2021; 7():29. PubMed ID: 34567743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing and Characterizing Dark Excitons through Coherent Multidimensional Spectroscopy.
    Tollerud JO; Cundiff ST; Davis JA
    Phys Rev Lett; 2016 Aug; 117(9):097401. PubMed ID: 27610881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bright triplet excitons in caesium lead halide perovskites.
    Becker MA; Vaxenburg R; Nedelcu G; Sercel PC; Shabaev A; Mehl MJ; Michopoulos JG; Lambrakos SG; Bernstein N; Lyons JL; Stöferle T; Mahrt RF; Kovalenko MV; Norris DJ; Rainò G; Efros AL
    Nature; 2018 Jan; 553(7687):189-193. PubMed ID: 29323292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.
    Manjappa M; Turaga SP; Srivastava YK; Bettiol AA; Singh R
    Opt Lett; 2017 Jun; 42(11):2106-2109. PubMed ID: 28569856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled metamaterial optical resonators for infrared emissivity spectrum modulation.
    Morsy AM; Povinelli ML
    Opt Express; 2021 Feb; 29(4):5840-5847. PubMed ID: 33726116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio finite-temperature excitons.
    Marini A
    Phys Rev Lett; 2008 Sep; 101(10):106405. PubMed ID: 18851235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically bright p-excitons indicating strong Coulomb coupling in transition-metal dichalcogenides.
    Stroucken T; Koch SW
    J Phys Condens Matter; 2015 Sep; 27(34):345003. PubMed ID: 26234300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence dynamics and fine structure of dark excitons in semiconducting single-wall carbon nanotubes.
    Alfonsi J; Meneghetti M
    J Phys Condens Matter; 2012 Jun; 24(25):255501. PubMed ID: 22647714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration amplification, damping, and self-oscillations in micromechanical resonators induced by optomechanical coupling through carrier excitation.
    Okamoto H; Ito D; Onomitsu K; Sanada H; Gotoh H; Sogawa T; Yamaguchi H
    Phys Rev Lett; 2011 Jan; 106(3):036801. PubMed ID: 21405286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.