These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30004883)

  • 1. A Promising Method for Calculating True Steady-State Metabolite Concentrations in Large-Scale Metabolic Reaction Network Models.
    Miyawaki-Kuwakado A; Komori S; Shiraishi F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):27-36. PubMed ID: 30004883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Efficient and Very Accurate Method for Calculating Steady-State Sensitivities in Metabolic Reaction Systems.
    Shiraishi F; Yoshida E; Voit EO
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1077-86. PubMed ID: 26357045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and highly accurate numerical differentiation method for sensitivity analysis of large-scale metabolic reaction systems.
    Shiraishi F; Furuta S; Ishimatsu T; Akhter J
    Math Biosci; 2007 Aug; 208(2):590-606. PubMed ID: 17303189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of kinetic parameters in an S-system equation model for a metabolic reaction system using the Newton-Raphson method.
    Iwata M; Sriyudthsak K; Hirai MY; Shiraishi F
    Math Biosci; 2014 Feb; 248():11-21. PubMed ID: 24291302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an S-system root-finding method for estimating parameters in a metabolic reaction model.
    Iwata M; Miyawaki-Kuwakado A; Yoshida E; Komori S; Shiraishi F
    Math Biosci; 2018 Jul; 301():21-31. PubMed ID: 29410225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks.
    Hoppe A; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jun; 1():23. PubMed ID: 17543097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly accurate computation of dynamic sensitivities in metabolic reaction systems by a Taylor series method.
    Shiraishi F; Egashira M; Iwata M
    Math Biosci; 2011 Sep; 233(1):59-67. PubMed ID: 21723302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens AM1 growth as validation.
    Ao P; Lee LW; Lidstrom ME; Yin L; Zhu X
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):980-94. PubMed ID: 18807980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reliable Taylor series-based computational method for the calculation of dynamic sensitivities in large-scale metabolic reaction systems: algorithm and software evaluation.
    Shiraishi F; Tomita T; Iwata M; Berrada AA; Hirayama H
    Math Biosci; 2009 Dec; 222(2):73-85. PubMed ID: 19747493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient, sparse biological network determination.
    August E; Papachristodoulou A
    BMC Syst Biol; 2009 Feb; 3():25. PubMed ID: 19236711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks.
    Dräger A; Zielinski DC; Keller R; Rall M; Eichner J; Palsson BO; Zell A
    BMC Syst Biol; 2015 Oct; 9():68. PubMed ID: 26452770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating the steady state of metabolic pathways.
    Song B; Büyüktahtakin IE; Ranka S; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):732-47. PubMed ID: 20479507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guaranteed error bounds for structured complexity reduction of biochemical networks.
    Prescott TP; Papachristodoulou A
    J Theor Biol; 2012 Jul; 304():172-82. PubMed ID: 22554951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal control of metabolic networks with saturable enzyme kinetics.
    Oyarzuun DA
    IET Syst Biol; 2011 Mar; 5(2):110-9. PubMed ID: 21405199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of kinetic-order sensitivities in metabolic reaction networks.
    Yamada M; Iwanaga M; Sriyudthsak K; Hirai MY; Shiraishi F
    J Theor Biol; 2017 Feb; 415():32-40. PubMed ID: 27939412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady states and stability in metabolic networks without regulation.
    Ivanov O; van der Schaft A; Weissing FJ
    J Theor Biol; 2016 Jul; 401():78-93. PubMed ID: 26992576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies.
    Dräger A; Kronfeld M; Ziller MJ; Supper J; Planatscher H; Magnus JB; Oldiges M; Kohlbacher O; Zell A
    BMC Syst Biol; 2009 Jan; 3():5. PubMed ID: 19144170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks.
    Sun X; Medvedovic M
    IET Syst Biol; 2016 Feb; 10(1):10-6. PubMed ID: 26816394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.