These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30005069)
1. 3D kidney segmentation from abdominal diffusion MRI using an appearance-guided deformable boundary. Shehata M; Mahmoud A; Soliman A; Khalifa F; Ghazal M; Abou El-Ghar M; El-Melegy M; El-Baz A PLoS One; 2018; 13(7):e0200082. PubMed ID: 30005069 [TBL] [Abstract][Full Text] [Related]
2. Computer-Aided Diagnostic System for Early Detection of Acute Renal Transplant Rejection Using Diffusion-Weighted MRI. Shehata M; Khalifa F; Soliman A; Ghazal M; Taher F; El-Ghar MA; Dwyer AC; Gimel'farb G; Keynton RS; El-Baz A IEEE Trans Biomed Eng; 2019 Feb; 66(2):539-552. PubMed ID: 29993503 [TBL] [Abstract][Full Text] [Related]
3. A fast stochastic framework for automatic MR brain images segmentation. Ismail M; Soliman A; Ghazal M; Switala AE; Gimel'farb G; Barnes GN; Khalil A; El-Baz A PLoS One; 2017; 12(11):e0187391. PubMed ID: 29136034 [TBL] [Abstract][Full Text] [Related]
4. 3D kidney segmentation from CT images using a level set approach guided by a novel stochastic speed function. Khalifa F; Elnakib A; Beache GM; Gimel'farb G; El-Ghar MA; Ouseph R; Sokhadze G; Manning S; McClure P; El-Baz A Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):587-94. PubMed ID: 22003747 [TBL] [Abstract][Full Text] [Related]
5. 3D Kidney Segmentation from Abdominal Images Using Spatial-Appearance Models. Khalifa F; Soliman A; Elmaghraby A; Gimel'farb G; El-Baz A Comput Math Methods Med; 2017; 2017():9818506. PubMed ID: 28280519 [TBL] [Abstract][Full Text] [Related]
6. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759 [TBL] [Abstract][Full Text] [Related]
7. Robust medical images segmentation using learned shape and appearance models. El-Baz A; Gimel'farb G Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):281-8. PubMed ID: 20425998 [TBL] [Abstract][Full Text] [Related]
8. Myocardial borders segmentation from cine MR images using bidirectional coupled parametric deformable models. Sliman H; Khalifa F; Elnakib A; Soliman A; El-Baz A; Beache GM; Elmaghraby A; Gimel'farb G Med Phys; 2013 Sep; 40(9):092302. PubMed ID: 24007176 [TBL] [Abstract][Full Text] [Related]
9. Spatially-constrained probability distribution model of incoherent motion (SPIM) for abdominal diffusion-weighted MRI. Kurugol S; Freiman M; Afacan O; Perez-Rossello JM; Callahan MJ; Warfield SK Med Image Anal; 2016 Aug; 32():173-83. PubMed ID: 27111049 [TBL] [Abstract][Full Text] [Related]
10. Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Martin S; Troccaz J; Daanenc V Med Phys; 2010 Apr; 37(4):1579-90. PubMed ID: 20443479 [TBL] [Abstract][Full Text] [Related]
11. Segmentation of prostate zones using probabilistic atlas-based method with diffusion-weighted MR images. Singh D; Kumar V; Das CJ; Singh A; Mehndiratta A Comput Methods Programs Biomed; 2020 Nov; 196():105572. PubMed ID: 32544780 [TBL] [Abstract][Full Text] [Related]
13. Segmentation of the proximal femur in radial MR scans using a random forest classifier and deformable model registration. Damopoulos D; Lerch TD; Schmaranzer F; Tannast M; ChĂȘnes C; Zheng G; Schmid J Int J Comput Assist Radiol Surg; 2019 Mar; 14(3):545-561. PubMed ID: 30604143 [TBL] [Abstract][Full Text] [Related]
14. Automated pixel-wise brain tissue segmentation of diffusion-weighted images via machine learning. Ciritsis A; Boss A; Rossi C NMR Biomed; 2018 Jul; 31(7):e3931. PubMed ID: 29697165 [TBL] [Abstract][Full Text] [Related]
15. Combining a deformable model and a probabilistic framework for an automatic 3D segmentation of prostate on MRI. Makni N; Puech P; Lopes R; Dewalle AS; Colot O; Betrouni N Int J Comput Assist Radiol Surg; 2009 Mar; 4(2):181-8. PubMed ID: 20033618 [TBL] [Abstract][Full Text] [Related]
16. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods. Shahedi M; Cool DW; Romagnoli C; Bauman GS; Bastian-Jordan M; Gibson E; Rodrigues G; Ahmad B; Lock M; Fenster A; Ward AD Med Phys; 2014 Nov; 41(11):113503. PubMed ID: 25370674 [TBL] [Abstract][Full Text] [Related]
17. Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging. Shahedi M; Cool DW; Bauman GS; Bastian-Jordan M; Fenster A; Ward AD J Digit Imaging; 2017 Dec; 30(6):782-795. PubMed ID: 28342043 [TBL] [Abstract][Full Text] [Related]
18. Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4-5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen. Chen T; Su ZH; Liu Z; Wang M; Cui ZF; Zhao L; Yang LJ; Zhang WC; Liu X; Liu J; Tan SY; Li SL; Feng QJ; Pang SM; Lu H Orthop Surg; 2022 Sep; 14(9):2256-2264. PubMed ID: 35979964 [TBL] [Abstract][Full Text] [Related]
19. Novel stochastic framework for automatic segmentation of human thigh MRI volumes and its applications in spinal cord injured individuals. Mesbah S; Shalaby AM; Stills S; Soliman AM; Willhite A; Harkema SJ; Rejc E; El-Baz AS PLoS One; 2019; 14(5):e0216487. PubMed ID: 31071158 [TBL] [Abstract][Full Text] [Related]
20. Infant Brain Extraction in T1-Weighted MR Images Using BET and Refinement Using LCDG and MGRF Models. Alansary A; Ismail M; Soliman A; Khalifa F; Nitzken M; Elnakib A; Mostapha M; Black A; Stinebruner K; Casanova MF; Zurada JM; El-Baz A IEEE J Biomed Health Inform; 2016 May; 20(3):925-935. PubMed ID: 25823048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]