These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 30005071)

  • 21. Effects of Mutations on the Aggregation Propensity of the Human Prion-Like Protein hnRNPA2B1.
    Paul KR; Molliex A; Cascarina S; Boncella AE; Taylor JP; Ross ED
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28137911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis.
    Goehler H; Dröge A; Lurz R; Schnoegl S; Chernoff YO; Wanker EE
    PLoS One; 2010 Mar; 5(3):e9642. PubMed ID: 20224794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteolysis suppresses spontaneous prion generation in yeast.
    Okamoto A; Hosoda N; Tanaka A; Newnam GP; Chernoff YO; Hoshino SI
    J Biol Chem; 2017 Dec; 292(49):20113-20124. PubMed ID: 29038292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short disordered protein segment regulates cross-species transmission of a yeast prion.
    Shida T; Kamatari YO; Yoda T; Yamaguchi Y; Feig M; Ohhashi Y; Sugita Y; Kuwata K; Tanaka M
    Nat Chem Biol; 2020 Jul; 16(7):756-765. PubMed ID: 32284601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fused in Sarcoma: Properties, Self-Assembly and Correlation with Neurodegenerative Diseases.
    Chen C; Ding X; Akram N; Xue S; Luo SZ
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31022909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spreading of a prion domain from cell-to-cell by vesicular transport in Caenorhabditis elegans.
    Nussbaum-Krammer CI; Park KW; Li L; Melki R; Morimoto RI
    PLoS Genet; 2013 Mar; 9(3):e1003351. PubMed ID: 23555277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emergence and evolution of yeast prion and prion-like proteins.
    An L; Fitzpatrick D; Harrison PM
    BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polyglutamine toxicity is controlled by prion composition and gene dosage in yeast.
    Gong H; Romanova NV; Allen KD; Chandramowlishwaran P; Gokhale K; Newnam GP; Mieczkowski P; Sherman MY; Chernoff YO
    PLoS Genet; 2012; 8(4):e1002634. PubMed ID: 22536159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A bioinformatics method for identifying Q/N-rich prion-like domains in proteins.
    Ross ED; Maclea KS; Anderson C; Ben-Hur A
    Methods Mol Biol; 2013; 1017():219-28. PubMed ID: 23719919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast.
    Taneja V; Maddelein ML; Talarek N; Saupe SJ; Liebman SW
    Mol Cell; 2007 Jul; 27(1):67-77. PubMed ID: 17612491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mammalian amyloidogenic proteins promote prion nucleation in yeast.
    Chandramowlishwaran P; Sun M; Casey KL; Romanyuk AV; Grizel AV; Sopova JV; Rubel AA; Nussbaum-Krammer C; Vorberg IM; Chernoff YO
    J Biol Chem; 2018 Mar; 293(9):3436-3450. PubMed ID: 29330303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of amino acid composition on yeast prion formation and prion domain interactions.
    Ross ED; Toombs JA
    Prion; 2010; 4(2):60-5. PubMed ID: 20495349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autophagy protects against de novo formation of the [PSI+] prion in yeast.
    Speldewinde SH; Doronina VA; Grant CM
    Mol Biol Cell; 2015 Dec; 26(25):4541-51. PubMed ID: 26490118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Rnq1 protein protects [PSI^(+)] prion from effect of the PNM mutation].
    Bondarev SA; Likholetova DV; Belousov MV; Zhouravleva GA
    Mol Biol (Mosk); 2017; 51(2):367-371. PubMed ID: 28537243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion.
    Ali M; Chernova TA; Newnam GP; Yin L; Shanks J; Karpova TS; Lee A; Laur O; Subramanian S; Kim D; McNally JG; Seyfried NT; Chernoff YO; Wilkinson KD
    J Biol Chem; 2014 Oct; 289(40):27625-39. PubMed ID: 25143386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterologous aggregates promote de novo prion appearance via more than one mechanism.
    Arslan F; Hong JY; Kanneganti V; Park SK; Liebman SW
    PLoS Genet; 2015 Jan; 11(1):e1004814. PubMed ID: 25568955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manipulating the aggregation activity of human prion-like proteins.
    Cascarina SM; Paul KR; Ross ED
    Prion; 2017 Sep; 11(5):323-331. PubMed ID: 28934062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates.
    Liu S; Hossinger A; Göbbels S; Vorberg IM
    Prion; 2017 Mar; 11(2):98-112. PubMed ID: 28402718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-binding proteins with prion-like domains in health and disease.
    Harrison AF; Shorter J
    Biochem J; 2017 Apr; 474(8):1417-1438. PubMed ID: 28389532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly of the asparagine- and glutamine-rich yeast prions into protein fibrils.
    Bousset L; Savistchenko J; Melki R
    Curr Alzheimer Res; 2008 Jun; 5(3):251-9. PubMed ID: 18537542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.