BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30005214)

  • 1. Impact of non-brain anatomy and coil orientation on inter- and intra-subject variability in TMS at midline.
    Lee EG; Rastogi P; Hadimani RL; Jiles DC; Camprodon JA
    Clin Neurophysiol; 2018 Sep; 129(9):1873-1883. PubMed ID: 30005214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TMS intensity and focality correlation with coil orientation at three non-motor regions.
    Gomez-Feria J; Fernandez-Corazza M; Martin-Rodriguez JF; Mir P
    Phys Med Biol; 2022 Feb; 67(5):. PubMed ID: 35081513
    [No Abstract]   [Full Text] [Related]  

  • 3. Real-time computation of the TMS-induced electric field in a realistic head model.
    Stenroos M; Koponen LM
    Neuroimage; 2019 Dec; 203():116159. PubMed ID: 31494248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas.
    Janssen AM; Oostendorp TF; Stegeman DF
    J Neuroeng Rehabil; 2015 May; 12():47. PubMed ID: 25981522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atlas of optimal coil orientation and position for TMS: A computational study.
    Gomez-Tames J; Hamasaka A; Laakso I; Hirata A; Ugawa Y
    Brain Stimul; 2018; 11(4):839-848. PubMed ID: 29699821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3-axis coil design for multichannel TMS arrays.
    Navarro de Lara LI; Daneshzand M; Mascarenas A; Paulson D; Pratt K; Okada Y; Raij T; Makarov SN; Nummenmaa A
    Neuroimage; 2021 Jan; 224():117355. PubMed ID: 32916290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy.
    Gomez LJ; Goetz SM; Peterchev AV
    J Neural Eng; 2018 Aug; 15(4):046033. PubMed ID: 29855433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty quantification in transcranial magnetic stimulation via high-dimensional model representation.
    Gomez LJ; Yücel AC; Hernandez-Garcia L; Taylor SF; Michielssen E
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):361-72. PubMed ID: 25203980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast computational optimization of TMS coil placement for individualized electric field targeting.
    Gomez LJ; Dannhauer M; Peterchev AV
    Neuroimage; 2021 Mar; 228():117696. PubMed ID: 33385544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.
    Deng ZD; Lisanby SH; Peterchev AV
    Brain Stimul; 2013 Jan; 6(1):1-13. PubMed ID: 22483681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of coil orientation on the electric field induced by TMS over the hand motor area.
    Laakso I; Hirata A; Ugawa Y
    Phys Med Biol; 2014 Jan; 59(1):203-18. PubMed ID: 24334481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.
    Iwahashi M; Gomez-Tames J; Laakso I; Hirata A
    Phys Med Biol; 2017 Mar; 62(6):2224-2238. PubMed ID: 28222046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Induced Fields in Virtual Human and Rat Heads by Transcranial Magnetic Stimulation.
    Lu YW; Lu M
    Biomed Res Int; 2018; 2018():5270279. PubMed ID: 30687748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subject-specific optimization of channel currents for multichannel transcranial magnetic stimulation.
    Cline CC; Johnson NN; He B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2083-6. PubMed ID: 26736698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A generalized workflow for conducting electric field-optimized, fMRI-guided, transcranial magnetic stimulation.
    Balderston NL; Roberts C; Beydler EM; Deng ZD; Radman T; Luber B; Lisanby SH; Ernst M; Grillon C
    Nat Protoc; 2020 Nov; 15(11):3595-3614. PubMed ID: 33005039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and accurate computational E-field dosimetry for group-level transcranial magnetic stimulation targeting.
    Hasan NI; Wang D; Gomez LJ
    Comput Biol Med; 2023 Dec; 167():107614. PubMed ID: 37913615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The strength and spread of the electric field induced by transcranial rotating permanent magnet stimulation in comparison with conventional transcranial magnetic stimulation.
    Helekar SA; Convento S; Nguyen L; John BS; Patel A; Yau JM; Voss HU
    J Neurosci Methods; 2018 Nov; 309():153-160. PubMed ID: 30194040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of posture on electric fields of non-invasive brain stimulation.
    Mikkonen M; Laakso I
    Phys Med Biol; 2019 Mar; 64(6):065019. PubMed ID: 30708366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex.
    Opitz A; Legon W; Rowlands A; Bickel WK; Paulus W; Tyler WJ
    Neuroimage; 2013 Nov; 81():253-264. PubMed ID: 23644000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation.
    Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A
    Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.