BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30005284)

  • 21. Conformational changes of α-lactalbumin adsorbed at oil-water interfaces: interplay between protein structure and emulsion stability.
    Zhai J; Hoffmann SV; Day L; Lee TH; Augustin MA; Aguilar MI; Wooster TJ
    Langmuir; 2012 Feb; 28(5):2357-67. PubMed ID: 22201548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physicochemical Quantitative Analysis of the Oil-Water Interface as Affected by the Mutual Interactions between Pea Protein Isolate and Mono- and Diglycerides.
    Wang Z; Li J; Peng C; Li B; Shen Q; Chen Y
    Foods; 2024 Jan; 13(1):. PubMed ID: 38201204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties.
    Qin XS; Luo ZG; Peng XC
    J Agric Food Chem; 2018 May; 66(17):4449-4457. PubMed ID: 29664623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.
    Yin B; Zhang R; Yao P
    Molecules; 2015 Mar; 20(3):5165-83. PubMed ID: 25803397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of pea vicilin. 1. Denoting convicilin as the alpha-subunit of the Pisum vicilin family.
    O'Kane FE; Happe RP; Vereijken JM; Gruppen H; van Boekel MA
    J Agric Food Chem; 2004 May; 52(10):3141-8. PubMed ID: 15137866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shear rheological properties of acid hydrolyzed insoluble proteins from Chlorella protothecoides at the oil-water interface.
    Dai L; Bergfreund J; Reichert CL; Fischer P; Weiss J
    J Colloid Interface Sci; 2019 Sep; 551():297-304. PubMed ID: 31096137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Oil Hydrophobicity on the Adsorption and Rheology of β-Lactoglobulin at Oil-Water Interfaces.
    Bergfreund J; Bertsch P; Kuster S; Fischer P
    Langmuir; 2018 Apr; 34(16):4929-4936. PubMed ID: 29616820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The nature of the apolar phase influences the structure of the protein emulsifier in oil-in-water emulsions stabilized by bovine serum albumin. A front-surface fluorescence study.
    Rampon V; Brossard C; Mouhous-Riou N; Bousseau B; Llamas G; Genot C
    Adv Colloid Interface Sci; 2004 May; 108-109():87-94. PubMed ID: 15072931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes.
    Barac M; Cabrilo S; Pesic M; Stanojevic S; Zilic S; Macej O; Ristic N
    Int J Mol Sci; 2010; 11(12):4973-90. PubMed ID: 21614186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles.
    Akartuna I; Studart AR; Tervoort E; Gonzenbach UT; Gauckler LJ
    Langmuir; 2008 Jul; 24(14):7161-8. PubMed ID: 18547079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of soy proteins, hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability.
    Chen W; Liang G; Li X; He Z; Zeng M; Gao D; Qin F; Goff HD; Chen J
    Colloids Surf B Biointerfaces; 2019 May; 177():550-558. PubMed ID: 30825847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability.
    Zhai J; Wooster TJ; Hoffmann SV; Lee TH; Augustin MA; Aguilar MI
    Langmuir; 2011 Aug; 27(15):9227-36. PubMed ID: 21668007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of Speckled Sugar bean protein isolate at oil-water interface: Effect of ionic strength and pH.
    Rahmati NF; Koocheki A; Varidi M; Kadkhodaee R
    Int J Biol Macromol; 2017 Feb; 95():1179-1189. PubMed ID: 27825823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of novel pea protein-based nanoemulsions for delivery of nutraceuticals.
    Donsì F; Senatore B; Huang Q; Ferrari G
    J Agric Food Chem; 2010 Oct; 58(19):10653-60. PubMed ID: 20806943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface.
    Li X; Al-Assaf S; Fang Y; Phillips GO
    Carbohydr Polym; 2013 Jan; 91(2):573-80. PubMed ID: 23121947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption kinetics and rheological interfacial properties of plant proteins at the oil-water interface.
    Ducel V; Richard J; Popineau Y; Boury F
    Biomacromolecules; 2004; 5(6):2088-93. PubMed ID: 15530021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tyrosinase-crosslinked pea protein emulsions: Impact of zein incorporation.
    Glusac J; Davidesko-Vardi I; Isaschar-Ovdat S; Kukavica B; Fishman A
    Food Res Int; 2019 Feb; 116():370-378. PubMed ID: 30716959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.