These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30005897)
1. Substantial evidence for the rhododendrol-induced generation of hydroxyl radicals that causes melanocyte cytotoxicity and induces chemical leukoderma. Gabe Y; Miyaji A; Kohno M; Hachiya A; Moriwaki S; Baba T J Dermatol Sci; 2018 Sep; 91(3):311-316. PubMed ID: 30005897 [TBL] [Abstract][Full Text] [Related]
2. 4-(4-Hydroxyphenyl)-2-butanol (rhododendrol)-induced melanocyte cytotoxicity is enhanced by UVB exposure through generation of oxidative stress. Goto N; Tsujimoto M; Nagai H; Masaki T; Ito S; Wakamatsu K; Nishigori C Exp Dermatol; 2018 Jul; 27(7):754-762. PubMed ID: 29630780 [TBL] [Abstract][Full Text] [Related]
3. Biochemical Mechanism of Rhododendrol-Induced Leukoderma. Ito S; Wakamatsu K Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29439519 [No Abstract] [Full Text] [Related]
4. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Sasaki M; Kondo M; Sato K; Umeda M; Kawabata K; Takahashi Y; Suzuki T; Matsunaga K; Inoue S Pigment Cell Melanoma Res; 2014 Sep; 27(5):754-63. PubMed ID: 24890809 [TBL] [Abstract][Full Text] [Related]
5. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold. Kasamatsu S; Hachiya A; Nakamura S; Yasuda Y; Fujimori T; Takano K; Moriwaki S; Hase T; Suzuki T; Matsunaga K J Dermatol Sci; 2014 Oct; 76(1):16-24. PubMed ID: 25082450 [TBL] [Abstract][Full Text] [Related]
6. Open-label pilot study to evaluate the effectiveness of topical bimatoprost on rhododendrol-induced refractory leukoderma. Fukaya S; Kamata M; Kasanuki T; Yokobori M; Takeoka S; Hayashi K; Tanaka T; Fukuyasu A; Ishikawa T; Ohnishi T; Iimuro S; Tada Y; Watanabe S J Dermatol; 2018 Nov; 45(11):1283-1288. PubMed ID: 30156328 [TBL] [Abstract][Full Text] [Related]
7. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity. Ito S; Ojika M; Yamashita T; Wakamatsu K Pigment Cell Melanoma Res; 2014 Sep; 27(5):744-53. PubMed ID: 24903082 [TBL] [Abstract][Full Text] [Related]
8. Biochemical, cytological, and immunological mechanisms of rhododendrol-induced leukoderma. Tokura Y; Fujiyama T; Ikeya S; Tatsuno K; Aoshima M; Kasuya A; Ito T J Dermatol Sci; 2015 Mar; 77(3):146-9. PubMed ID: 25726326 [TBL] [Abstract][Full Text] [Related]
9. Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin. Abe Y; Okamura K; Kawaguchi M; Hozumi Y; Aoki H; Kunisada T; Ito S; Wakamatsu K; Matsunaga K; Suzuki T J Dermatol Sci; 2016 Jan; 81(1):35-43. PubMed ID: 26547111 [TBL] [Abstract][Full Text] [Related]
10. Upregulation of CD86 and IL-12 by rhododendrol in THP-1 cells cocultured with melanocytes through ROS and ATP. Katahira Y; Sakamoto E; Watanabe A; Furusaka Y; Inoue S; Hasegawa H; Mizoguchi I; Yo K; Yamaji F; Toyoda A; Yoshimoto T J Dermatol Sci; 2022 Dec; 108(3):167-177. PubMed ID: 36610941 [TBL] [Abstract][Full Text] [Related]
11. Glutathione maintenance is crucial for survival of melanocytes after exposure to rhododendrol. Kondo M; Kawabata K; Sato K; Yamaguchi S; Hachiya A; Takahashi Y; Inoue S Pigment Cell Melanoma Res; 2016 Sep; 29(5):541-9. PubMed ID: 27223685 [TBL] [Abstract][Full Text] [Related]
12. Effects of rhododendrol and its metabolic products on melanocytic cell growth. Okura M; Yamashita T; Ishii-Osai Y; Yoshikawa M; Sumikawa Y; Wakamatsu K; Ito S J Dermatol Sci; 2015 Nov; 80(2):142-9. PubMed ID: 26282085 [TBL] [Abstract][Full Text] [Related]
13. Copper chelation by d-penicillamine alleviates melanocyte death induced by rhododendrol without inhibiting tyrosinase. Nagatani K; Abe Y; Homma T; Fujii J; Suzuki T Biochem Biophys Res Commun; 2023 Jun; 663():71-77. PubMed ID: 37119768 [TBL] [Abstract][Full Text] [Related]
14. [Leukoderma caused by chemicals: mechanisms underlying 4-alkyl/aryl-substituted phenols- and rhododendrol-induced melanocyte loss]. Nishimaki-Mogami T Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2015; (133):13-20. PubMed ID: 26821466 [TBL] [Abstract][Full Text] [Related]
15. Oxidative Oligomerization of DBL Catechol, a potential Cytotoxic Compound for Melanocytes, Reveals the Occurrence of Novel Ionic Diels-Alder Type Additions. Sugumaran M; Umit K; Evans J; Muriph R; Ito S; Wakamatsu K Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32942764 [TBL] [Abstract][Full Text] [Related]
16. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RD-pheomelanin and covalent binding with thiol proteins. Ito S; Okura M; Nakanishi Y; Ojika M; Wakamatsu K; Yamashita T Pigment Cell Melanoma Res; 2015 May; 28(3):295-306. PubMed ID: 25713930 [TBL] [Abstract][Full Text] [Related]
17. Zebrafish as a new model for rhododendrol-induced leukoderma. Hayazaki M; Hatano O; Shimabayashi S; Akiyama T; Takemori H; Hamamoto A Pigment Cell Melanoma Res; 2021 Nov; 34(6):1029-1038. PubMed ID: 34310852 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of melanocytes-specific cytotoxicity induced by phenol compounds having a prooxidant effect, relating to the appearance of leukoderma. Nagata T; Ito S; Itoga K; Kanazawa H; Masaki H Biomed Res Int; 2015; 2015():479798. PubMed ID: 25861631 [TBL] [Abstract][Full Text] [Related]
19. Generation of hydroxyl radicals and singlet oxygen during oxidation of rhododendrol and rhododendrol-catechol. Miyaji A; Gabe Y; Kohno M; Baba T J Clin Biochem Nutr; 2017 Mar; 60(2):86-92. PubMed ID: 28366986 [TBL] [Abstract][Full Text] [Related]
20. A framework to mitigate the risk of chemical leukoderma: Consumer products. Bjerke DL; Wu S; Wakamatsu K; Ito S; Wang J; Laughlin T; Hakozaki T Regul Toxicol Pharmacol; 2022 Jun; 131():105157. PubMed ID: 35292310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]