These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30005897)

  • 21. Inhibitory effect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues.
    Xiao L; Matsubayashi K; Miwa N
    Arch Dermatol Res; 2007 Aug; 299(5-6):245-57. PubMed ID: 17333222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 4-(4-hydroroxyphenyl)-2-butanol (rhododendrol) activates the autophagy-lysosome pathway in melanocytes: insights into the mechanisms of rhododendrol-induced leukoderma.
    Yang L; Yang F; Wataya-Kaneda M; Tanemura A; Tsuruta D; Katayama I
    J Dermatol Sci; 2015 Mar; 77(3):182-5. PubMed ID: 25680854
    [No Abstract]   [Full Text] [Related]  

  • 23. Tyrosinase-Catalyzed Oxidation of the Leukoderma-Inducing Agent Raspberry Ketone Produces (E)-4-(3-Oxo-1-butenyl)-1,2-benzoquinone: Implications for Melanocyte Toxicity.
    Ito S; Hinoshita M; Suzuki E; Ojika M; Wakamatsu K
    Chem Res Toxicol; 2017 Mar; 30(3):859-868. PubMed ID: 28219012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Herb Sanqi-Derived Compound K Alleviates Oxidative Stress in Cultured Human Melanocytes and Improves Oxidative-Stress-Related Leukoderma in Guinea Pigs.
    Tang S; Yang L; Kuroda Y; Lai S; Xie S; Zhang H; Katayama I
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinical and epidemiological analysis in 149 cases of rhododendrol-induced leukoderma.
    Yoshikawa M; Sumikawa Y; Hida T; Kamiya T; Kase K; Ishii-Osai Y; Kato J; Kan Y; Kamiya S; Sato Y; Yamashita T
    J Dermatol; 2017 May; 44(5):582-587. PubMed ID: 27882588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunohistochemical analysis of rhododendrol-induced leukoderma in improved and aggravated cases.
    Yasuda M; Sekiguchi A; Kishi C; Toki S; Arase N; Takahashi A; Yang F; Tanemura A; Hayashi M; Abe Y; Hamada T; Suzuki T; Katayama I; Ishikawa O
    J Dermatol Sci; 2020 Aug; 99(2):140-143. PubMed ID: 32653297
    [No Abstract]   [Full Text] [Related]  

  • 27. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols.
    Ito S; Wakamatsu K
    J Dermatol Sci; 2015 Oct; 80(1):18-24. PubMed ID: 26228294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45.
    Kim M; Baek HS; Lee M; Park H; Shin SS; Choi DW; Lim KM
    Toxicol In Vitro; 2016 Apr; 32():339-46. PubMed ID: 26867644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhododendrol-induced leukoderma update II: Pathophysiology, mechanisms, risk evaluation, and possible mechanism-based treatments in comparison with vitiligo.
    Inoue S; Katayama I; Suzuki T; Tanemura A; Ito S; Abe Y; Sumikawa Y; Yoshikawa M; Suzuki K; Yagami A; Masui Y; Ito A; Matsunaga K
    J Dermatol; 2021 Jul; 48(7):969-978. PubMed ID: 33951216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects.
    Solano F; Briganti S; Picardo M; Ghanem G
    Pigment Cell Res; 2006 Dec; 19(6):550-71. PubMed ID: 17083484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An immune pathological and ultrastructural skin analysis for rhododenol-induced leukoderma patients.
    Tanemura A; Yang L; Yang F; Nagata Y; Wataya-Kaneda M; Fukai K; Tsuruta D; Ohe R; Yamakawa M; Suzuki T; Katayama I
    J Dermatol Sci; 2015 Mar; 77(3):185-8. PubMed ID: 25676426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds.
    Nishimaki-Mogami T; Ito S; Cui H; Akiyama T; Tamehiro N; Adachi R; Wakamatsu K; Ikarashi Y; Kondo K
    J Dermatol Sci; 2022 Nov; 108(2):77-86. PubMed ID: 36567223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melanocyte-specific cytotoxic T lymphocytes in patients with rhododendrol-induced leukoderma.
    Fujiyama T; Ikeya S; Ito T; Tatsuno K; Aoshima M; Kasuya A; Sakabe J; Suzuki T; Tokura Y
    J Dermatol Sci; 2015 Mar; 77(3):190-2. PubMed ID: 25724360
    [No Abstract]   [Full Text] [Related]  

  • 34. Human tyrosinase is able to oxidize both enantiomers of rhododendrol.
    Ito S; Gerwat W; Kolbe L; Yamashita T; Ojika M; Wakamatsu K
    Pigment Cell Melanoma Res; 2014 Nov; 27(6):1149-53. PubMed ID: 25130058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. T-Cell Responses to Tyrosinase-Derived Self-Peptides in Patients with Leukoderma Induced by Rhododendrol: Implications for Immunotherapy Targeting Melanoma.
    Takagi R; Kawano M; Nakamura K; Tsuchida T; Matsushita S
    Dermatology; 2016; 232(1):44-9. PubMed ID: 26613259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: Biosafety as skin whitening agents.
    Hu ZM; Zhou Q; Lei TC; Ding SF; Xu SZ
    J Dermatol Sci; 2009 Sep; 55(3):179-84. PubMed ID: 19574027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-term Use of Topical Bimatoprost on Rhododendrol-induced Refractory Leukoderma: A Case Report.
    Fukaya S; Kamata M; Kasanuki T; Yokobori M; Takeoka S; Hayashi K; Tanaka T; Fukuyasu A; Ishikawa T; Ohnishi T; Iimuro S; Watanabe S; Tada Y
    Acta Derm Venereol; 2019 Nov; 99(12):1178-1179. PubMed ID: 31449314
    [No Abstract]   [Full Text] [Related]  

  • 38. Rhododendrol-induced leukoderma accompanied by allergic contact dermatitis caused by a non-rhododendrol skin-lightening agent, 5,5'-dipropylbiphenyl-2,2'-diol.
    Yagami A; Suzuki K; Sano A; Takahashi M; Kobayashi T; Morita Y; Ando A; Iwata Y; Matsunaga K
    J Dermatol; 2015 Jul; 42(7):739-40. PubMed ID: 25875673
    [No Abstract]   [Full Text] [Related]  

  • 39. The effect of rhododendrol inhibition of NF-κB on melanocytes in the presence of tyrosinase.
    Arase N; Yang L; Tanemura A; Yang F; Suenaga T; Arase H; Katayama I
    J Dermatol Sci; 2016 Aug; 83(2):157-9. PubMed ID: 27174091
    [No Abstract]   [Full Text] [Related]  

  • 40. Different effects of five depigmentary compounds, rhododendrol, raspberry ketone, monobenzone, rucinol and AP736 on melanogenesis and viability of human epidermal melanocytes.
    Lee CS; Joo YH; Baek HS; Park M; Kim JH; Shin HJ; Park NH; Lee JH; Park YH; Shin SS; Lee HK
    Exp Dermatol; 2016 Jan; 25(1):44-9. PubMed ID: 26440747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.