These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30006013)

  • 1. Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles.
    Arsalan A; Younus H
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1833-1847. PubMed ID: 30006013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.
    Johnson PA; Park HJ; Driscoll AJ
    Methods Mol Biol; 2011; 679():183-91. PubMed ID: 20865397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential applications of enzymes immobilized on/in nano materials: A review.
    Ansari SA; Husain Q
    Biotechnol Adv; 2012; 30(3):512-23. PubMed ID: 21963605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility.
    Jia H; Zhu G; Wang P
    Biotechnol Bioeng; 2003 Nov; 84(4):406-14. PubMed ID: 14574697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier.
    Tsang SC; Yu CH; Gao X; Tam K
    J Phys Chem B; 2006 Aug; 110(34):16914-22. PubMed ID: 16927981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles.
    Aggarwal V; Pundir CS
    Methods Enzymol; 2016; 571():197-223. PubMed ID: 27112401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Immobilization of Enzymes in Biomimetic Silica.
    Jackson E; Correa S; Betancor L
    Methods Mol Biol; 2020; 2100():259-270. PubMed ID: 31939129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of superparamagnetic nanobiocatalysts for green chemistry applications.
    Gasser CA; Ammann EM; Schäffer A; Shahgaldian P; Corvini PF
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7281-96. PubMed ID: 27106914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosinase immobilization on aminated magnetic nanoparticles by physical adsorption combined with covalent crosslinking with improved catalytic activity, reusability and storage stability.
    Liu DM; Chen J; Shi YP
    Anal Chim Acta; 2018 May; 1006():90-98. PubMed ID: 30016268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilized trypsin on hydrophobic cellulose decorated nanoparticles shows good stability and reusability for protein digestion.
    Sun X; Cai X; Wang RQ; Xiao J
    Anal Biochem; 2015 May; 477():21-7. PubMed ID: 25700866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review.
    Bilal M; Iqbal HMN; Adil SF; Shaik MR; Abdelgawad A; Hatshan MR; Khan M
    J Adv Res; 2022 May; 38():157-177. PubMed ID: 35572403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Immobilized Enzymes in Food Industry.
    Yushkova ED; Nazarova EA; Matyuhina AV; Noskova AO; Shavronskaya DO; Vinogradov VV; Skvortsova NN; Krivoshapkina EF
    J Agric Food Chem; 2019 Oct; 67(42):11553-11567. PubMed ID: 31553885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Spectroscopy study of the immobilized cellulase of magnetic nanoparticles Fe3O4].
    Wang M; Song F; Wang SL; Wu QS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):895-8. PubMed ID: 16883863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media.
    Cruz JC; Würges K; Kramer M; Pfromm PH; Rezac ME; Czermak P
    Methods Mol Biol; 2011; 743():147-60. PubMed ID: 21553189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme catalysis on solid surfaces.
    Laurent N; Haddoub R; Flitsch SL
    Trends Biotechnol; 2008 Jun; 26(6):328-37. PubMed ID: 18430479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylanase immobilization on modified superparamagnetic graphene oxide nanocomposite: Effect of PEGylation on activity and stability.
    Mehnati-Najafabadi V; Taheri-Kafrani A; Bordbar AK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):418-425. PubMed ID: 28888544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review.
    Bilal M; Zhao Y; Rasheed T; Iqbal HMN
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2530-2544. PubMed ID: 30201561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of a green nano-support for the covalent immobilization of glucoamylase from Neurospora sitophila.
    Syed F; Ali K; Asad MJ; Fraz MG; Khan Z; Imran M; Taj R; Ahmad A
    J Photochem Photobiol B; 2016 Sep; 162():309-317. PubMed ID: 27395794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study.
    Ahmad R; Sardar M
    Indian J Biochem Biophys; 2014 Aug; 51(4):314-20. PubMed ID: 25296503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis.
    Idris A; Bukhari A
    Biotechnol Adv; 2012; 30(3):550-63. PubMed ID: 22041165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.