These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30006111)

  • 1. Effect of harmonic rank on sequential sound segregation.
    Madsen SMK; Dau T; Moore BCJ
    Hear Res; 2018 Sep; 367():161-168. PubMed ID: 30006111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does fundamental-frequency discrimination measure virtual pitch discrimination?
    Micheyl C; Divis K; Wrobleski DM; Oxenham AJ
    J Acoust Soc Am; 2010 Oct; 128(4):1930-42. PubMed ID: 20968365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task.
    Vliegen J; Moore BC; Oxenham AJ
    J Acoust Soc Am; 1999 Aug; 106(2):938-45. PubMed ID: 10462799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perceptual learning of fundamental frequency discrimination: effects of fundamental frequency, harmonic number, and component phase.
    Miyazono H; Glasberg BR; Moore BC
    J Acoust Soc Am; 2010 Dec; 128(6):3649-57. PubMed ID: 21218897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and F0 discrimination of harmonic complex tones in the presence of competing tones or noise.
    Micheyl C; Bernstein JG; Oxenham AJ
    J Acoust Soc Am; 2006 Sep; 120(3):1493-505. PubMed ID: 17004471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential stream segregation in the absence of spectral cues.
    Vliegen J; Oxenham AJ
    J Acoust Soc Am; 1999 Jan; 105(1):339-46. PubMed ID: 9921660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of within-fiber temporal coding for perceptual studies of F0 discrimination and discrimination of harmonic and inharmonic tone complexes.
    Kale S; Micheyl C; Heinz MG
    J Assoc Res Otolaryngol; 2014 Jun; 15(3):465-82. PubMed ID: 24658856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Pitch and Timbre Cues on Auditory Grouping and Stream Segregation.
    Oh Y; Zuwala JC; Salvagno CM; Tilbrook GA
    Front Neurosci; 2021; 15():725093. PubMed ID: 35087369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dominant region for the pitch of complex tones with low fundamental frequencies.
    Jackson HM; Moore BC
    J Acoust Soc Am; 2013 Aug; 134(2):1193-204. PubMed ID: 23927118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual auditory stream segregation of sequences of complex sounds in subjects with normal and impaired hearing.
    Grimault N; Micheyl C; Carlyon RP; Arthaud P; Collet L
    Br J Audiol; 2001 Jun; 35(3):173-82. PubMed ID: 11548044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of peripheral resolvability on the perceptual segregation of harmonic complex tones differing in fundamental frequency.
    Grimault N; Micheyl C; Carlyon RP; Arthaud P; Collet L
    J Acoust Soc Am; 2000 Jul; 108(1):263-71. PubMed ID: 10923890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hearing loss on the resolution of partials and fundamental frequency discrimination.
    Moore BC; Glasberg BR
    J Acoust Soc Am; 2011 Nov; 130(5):2891-901. PubMed ID: 22087918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of diotic versus dichotic presentation on the pitch perception of tone complexes at medium and very high frequencies.
    Gockel HE; Carlyon RP
    Sci Rep; 2023 Aug; 13(1):13247. PubMed ID: 37582928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical markers of auditory stream segregation revealed for streaming based on tonotopy but not pitch.
    Ruggles DR; Tausend AN; Shamma SA; Oxenham AJ
    J Acoust Soc Am; 2018 Oct; 144(4):2424. PubMed ID: 30404514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ARTSTREAM: a neural network model of auditory scene analysis and source segregation.
    Grossberg S; Govindarajan KK; Wyse LL; Cohen MA
    Neural Netw; 2004 May; 17(4):511-36. PubMed ID: 15109681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of excitation-pattern cues in the detection of frequency shifts in bandpass-filtered complex tones.
    Marmel F; Plack CJ; Hopkins K; Carlyon RP; Gockel HE; Moore BC
    J Acoust Soc Am; 2015 May; 137(5):2687-97. PubMed ID: 25994700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of differences in the pattern of amplitude envelopes across harmonics on auditory stream segregation.
    Cusack R; Roberts B
    Hear Res; 2004 Jul; 193(1-2):95-104. PubMed ID: 15219324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects.
    Moore BC; Moore GA
    Hear Res; 2003 Aug; 182(1-2):153-63. PubMed ID: 12948610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distortion products and their influence on representation of pitch-relevant information in the human brainstem for unresolved harmonic complex tones.
    Smalt CJ; Krishnan A; Bidelman GM; Ananthakrishnan S; Gandour JT
    Hear Res; 2012 Oct; 292(1-2):26-34. PubMed ID: 22910032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Across-frequency pitch discrimination interference between complex tones containing resolved harmonics.
    Micheyl C; Oxenham AJ
    J Acoust Soc Am; 2007 Mar; 121(3):1621-31. PubMed ID: 17407899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.