BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30006292)

  • 21. Intrinsic intranasal chemosensory brain networks shown by resting-state functional MRI.
    Tobia MJ; Yang QX; Karunanayaka P
    Neuroreport; 2016 May; 27(7):527-31. PubMed ID: 27031873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tractography indicates lateralized differences between trigeminal and olfactory pathways.
    Thaploo D; Joshi A; Georgiopoulos C; Warr J; Hummel T
    Neuroimage; 2022 Nov; 261():119518. PubMed ID: 35926760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T.
    Schulte LH; Sprenger C; May A
    Neuroimage; 2016 Jan; 124(Pt A):518-525. PubMed ID: 26388554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in the central-nervous processing of olfactory stimuli according to their hedonic and arousal characteristics.
    Sorokowska A; Negoias S; Härtwig S; Gerber J; Iannilli E; Warr J; Hummel T
    Neuroscience; 2016 Jun; 324():62-8. PubMed ID: 26968764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain.
    de Araujo IE; Rolls ET; Kringelbach ML; McGlone F; Phillips N
    Eur J Neurosci; 2003 Oct; 18(7):2059-68. PubMed ID: 14622239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localisation of unilateral nasal stimuli across sensory systems.
    Frasnelli J; La Buissonnière Ariza V; Collignon O; Lepore F
    Neurosci Lett; 2010 Jul; 478(2):102-6. PubMed ID: 20451578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. fMRI measurement of the integrative effects of visual and chemical senses stimuli in humans.
    Tonoike M; Yoshida T; Sakuma H; Wang LQ
    J Integr Neurosci; 2013 Sep; 12(3):369-84. PubMed ID: 24070060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemosensory event-related potentials in relation to side of stimulation, age, sex, and stimulus concentration.
    Stuck BA; Frey S; Freiburg C; Hörmann K; Zahnert T; Hummel T
    Clin Neurophysiol; 2006 Jun; 117(6):1367-75. PubMed ID: 16651024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Central encoding of the strength of intranasal chemosensory trigeminal stimuli in a human experimental pain setting.
    Lötsch J; Oertel BG; Felden L; Nöth U; Deichmann R; Hummel T; Walter C
    Hum Brain Mapp; 2020 Dec; 41(18):5240-5254. PubMed ID: 32870583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissociated neural representations induced by complex and simple odorant molecules.
    Sezille C; Ferdenzi C; Chakirian A; Fournel A; Thevenet M; Gerber J; Hummel T; Bensafi M
    Neuroscience; 2015 Feb; 287():23-31. PubMed ID: 25526821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Severity of olfactory deficits is reflected in functional brain networks-An fMRI study.
    Reichert JL; Postma EM; Smeets PAM; Boek WM; de Graaf K; Schöpf V; Boesveldt S
    Hum Brain Mapp; 2018 Aug; 39(8):3166-3177. PubMed ID: 29602198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oral texture influences the neural processing of ortho- and retronasal odors in humans.
    Iannilli E; Bult JH; Roudnitzky N; Gerber J; de Wijk RA; Hummel T
    Brain Res; 2014 Oct; 1587():77-87. PubMed ID: 25175838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new trigemino-nociceptive stimulation model for event-related fMRI.
    Stankewitz A; Voit HL; Bingel U; Peschke C; May A
    Cephalalgia; 2010 Apr; 30(4):475-85. PubMed ID: 19673914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury.
    Han P; Winkler N; Hummel C; Hähner A; Gerber J; Hummel T
    J Neurol; 2018 Oct; 265(10):2322-2332. PubMed ID: 30109478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of fMRI data processing of olfactory responses with a perception-based template.
    Cerf-Ducastel B; Murphy C
    Neuroimage; 2004 Jun; 22(2):603-10. PubMed ID: 15193588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human amygdala activations during nasal chemoreception.
    Patin A; Pause BM
    Neuropsychologia; 2015 Nov; 78():171-94. PubMed ID: 26459095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural representations of novel objects associated with olfactory experience.
    Ghio M; Schulze P; Suchan B; Bellebaum C
    Behav Brain Res; 2016 Jul; 308():143-51. PubMed ID: 27083305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PET-based investigation of cerebral activation following intranasal trigeminal stimulation.
    Hummel T; Oehme L; van den Hoff J; Gerber J; Heinke M; Boyle JA; Beuthien-Baumann B
    Hum Brain Mapp; 2009 Apr; 30(4):1100-4. PubMed ID: 18412096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different representations of relative and absolute subjective value in the human brain.
    Grabenhorst F; Rolls ET
    Neuroimage; 2009 Oct; 48(1):258-68. PubMed ID: 19560545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Impact of Acoustic fMRI-Noise on Olfactory Sensitivity and Perception.
    Fjaeldstad AW; Nørgaard HJ; Fernandes HM
    Neuroscience; 2019 May; 406():262-267. PubMed ID: 30904663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.