These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30006364)

  • 21. Toward the biological model of the hippocampus as the successor representation agent.
    Lee H
    Biosystems; 2022 Mar; 213():104612. PubMed ID: 35093444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single dose of a dopamine agonist impairs reinforcement learning in humans: evidence from event-related potentials and computational modeling of striatal-cortical function.
    Santesso DL; Evins AE; Frank MJ; Schetter EC; Bogdan R; Pizzagalli DA
    Hum Brain Mapp; 2009 Jul; 30(7):1963-76. PubMed ID: 18726908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural basis of reinforcement learning and decision making.
    Lee D; Seo H; Jung MW
    Annu Rev Neurosci; 2012; 35():287-308. PubMed ID: 22462543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning to express reward prediction error-like dopaminergic activity requires plastic representations of time.
    Cone I; Clopath C; Shouval HZ
    Nat Commun; 2024 Jul; 15(1):5856. PubMed ID: 38997276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive Representations in Hippocampal and Prefrontal Hierarchies.
    Brunec IK; Momennejad I
    J Neurosci; 2022 Jan; 42(2):299-312. PubMed ID: 34799416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The asymmetric learning rates of murine exploratory behavior in sparse reward environments.
    Ohta H; Satori K; Takarada Y; Arake M; Ishizuka T; Morimoto Y; Takahashi T
    Neural Netw; 2021 Nov; 143():218-229. PubMed ID: 34157646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dopaminergic control of motivation and reinforcement learning: a closed-circuit account for reward-oriented behavior.
    Morita K; Morishima M; Sakai K; Kawaguchi Y
    J Neurosci; 2013 May; 33(20):8866-90. PubMed ID: 23678129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Navigating complex decision spaces: Problems and paradigms in sequential choice.
    Walsh MM; Anderson JR
    Psychol Bull; 2014 Mar; 140(2):466-86. PubMed ID: 23834192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.
    Glimcher PW
    Proc Natl Acad Sci U S A; 2011 Sep; 108 Suppl 3(Suppl 3):15647-54. PubMed ID: 21389268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Action-driven contrastive representation for reinforcement learning.
    Kim M; Rho K; Kim YD; Jung K
    PLoS One; 2022; 17(3):e0265456. PubMed ID: 35303031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Upside to Reward Sensitivity: The Hippocampus Supports Enhanced Reinforcement Learning in Adolescence.
    Davidow JY; Foerde K; Galván A; Shohamy D
    Neuron; 2016 Oct; 92(1):93-99. PubMed ID: 27710793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling awake hippocampal reactivations with model-based bidirectional search.
    Khamassi M; Girard B
    Biol Cybern; 2020 Apr; 114(2):231-248. PubMed ID: 32065253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Goal-directed decision making as probabilistic inference: a computational framework and potential neural correlates.
    Solway A; Botvinick MM
    Psychol Rev; 2012 Jan; 119(1):120-54. PubMed ID: 22229491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. (Reinforcement?) Learning to forage optimally.
    Kolling N; Akam T
    Curr Opin Neurobiol; 2017 Oct; 46():162-169. PubMed ID: 28918312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The short-latency dopamine signal: a role in discovering novel actions?
    Redgrave P; Gurney K
    Nat Rev Neurosci; 2006 Dec; 7(12):967-75. PubMed ID: 17115078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning offline: memory replay in biological and artificial reinforcement learning.
    Roscow EL; Chua R; Costa RP; Jones MW; Lepora N
    Trends Neurosci; 2021 Oct; 44(10):808-821. PubMed ID: 34481635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distributional Reinforcement Learning in the Brain.
    Lowet AS; Zheng Q; Matias S; Drugowitsch J; Uchida N
    Trends Neurosci; 2020 Dec; 43(12):980-997. PubMed ID: 33092893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond dichotomies in reinforcement learning.
    Collins AGE; Cockburn J
    Nat Rev Neurosci; 2020 Oct; 21(10):576-586. PubMed ID: 32873936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opponent learning with different representations in the cortico-basal ganglia pathways can develop obsession-compulsion cycle.
    Sato R; Shimomura K; Morita K
    PLoS Comput Biol; 2023 Jun; 19(6):e1011206. PubMed ID: 37319256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.