These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30006488)

  • 1. Universal Plant Phosphoproteomics Workflow and Its Application to Tomato Signaling in Response to Cold Stress.
    Hsu CC; Zhu Y; Arrington JV; Paez JS; Wang P; Zhu P; Chen IH; Zhu JK; Tao WA
    Mol Cell Proteomics; 2018 Oct; 17(10):2068-2080. PubMed ID: 30006488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling.
    Hsu CC; Arrington JV; Tao WA
    Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network.
    Gao J; Zhang S; He WD; Shao XH; Li CY; Wei YR; Deng GM; Kuang RB; Hu CH; Yi GJ; Yang QS
    Sci Rep; 2017 Jan; 7():40852. PubMed ID: 28106078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics profiling of ethylene-induced tomato flower pedicel abscission.
    Zhang XL; Qi MF; Xu T; Lu XJ; Li TL
    J Proteomics; 2015 May; 121():67-87. PubMed ID: 25829262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomics of cold stress-responsive mechanisms in Rhododendron chrysanthum.
    Liu Y; Fan H; Dong J; Chen J; Xu H; Zhou X
    Mol Biol Rep; 2022 Jan; 49(1):303-312. PubMed ID: 34743272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative phosphoproteomic analysis of tomato genotypes with contrasting cadmium tolerance.
    Marques DN; Stolze SC; Harzen A; Nogueira ML; Batagin-Piotto KD; Piotto FA; Mason C; Azevedo RA; Nakagami H
    Plant Cell Rep; 2021 Oct; 40(10):2001-2008. PubMed ID: 34410462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Plant Kinase Substrates Based on Kinase Assay-Linked Phosphoproteomics.
    Hsu CC; Arrington JV; Xue L; Tao WA
    Methods Mol Biol; 2017; 1636():327-335. PubMed ID: 28730489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of
    Liu H; Wang FF; Peng XJ; Huang JH; Shen SH
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Systemin Signaling Cascade As Derived from Time Course Analyses of the Systemin-responsive Phosphoproteome.
    Haj Ahmad F; Wu XN; Stintzi A; Schaller A; Schulze WX
    Mol Cell Proteomics; 2019 Aug; 18(8):1526-1542. PubMed ID: 31138643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato (
    Xie Q; Tian Y; Hu Z; Zhang L; Tang B; Wang Y; Li J; Chen G
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots.
    Sun H; Xia B; Wang X; Gao F; Zhou Y
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29039783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calcium-dependent protein kinase gene SpCPK33 from Solanum pennellii associated with increased cold tolerance in tomato.
    Hu J; Wang B; Yang T; Li N; Yang H; Yu Q; Wang J
    J Plant Physiol; 2022 Dec; 279():153834. PubMed ID: 36272175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale Phosphoproteomic Study of
    Kamal MM; Ishikawa S; Takahashi F; Suzuki K; Kamo M; Umezawa T; Shinozaki K; Kawamura Y; Uemura M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33207747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato.
    Klay I; Pirrello J; Riahi L; Bernadac A; Cherif A; Bouzayen M; Bouzid S
    ScientificWorldJournal; 2014; 2014():167681. PubMed ID: 25215313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteomics: Protein Phosphorylation in Regulation of Seed Germination and Plant Growth.
    Yin X; Wang X; Komatsu S
    Curr Protein Pept Sci; 2018 Feb; 19(4):401-412. PubMed ID: 28190389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves.
    Vu LD; Stes E; Van Bel M; Nelissen H; Maddelein D; Inzé D; Coppens F; Martens L; Gevaert K; De Smet I
    J Proteome Res; 2016 Dec; 15(12):4304-4317. PubMed ID: 27643528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.).
    Zhang M; Lv D; Ge P; Bian Y; Chen G; Zhu G; Li X; Yan Y
    J Proteomics; 2014 Sep; 109():290-308. PubMed ID: 25065648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of NaCl and NaHCO3 stress responsive proteins in tomato roots using iTRAQ-based analysis.
    Gong B; Zhang C; Li X; Wen D; Wang S; Shi Q; Wang X
    Biochem Biophys Res Commun; 2014 Mar; 446(1):417-22. PubMed ID: 24613841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response.
    Hsieh TH; Li CW; Su RC; Cheng CP; Sanjaya ; Tsai YC; Chan MT
    Planta; 2010 May; 231(6):1459-73. PubMed ID: 20358223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.