These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30006519)

  • 1. Influence of a transverse static magnetic field on the orientation and peritectic reaction of Cu-10.5 at.% Sn peritectic alloy.
    Lu Z; Fautrelle Y; Ren Z; Li X
    Sci Rep; 2018 Jul; 8(1):10641. PubMed ID: 30006519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys.
    Li X; Lu Z; Fautrelle Y; Gagnoud A; Moreau R; Ren Z
    Sci Rep; 2016 Nov; 6():37872. PubMed ID: 27886265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation mechanism of axial macrosegregation of primary phases induced by a static magnetic field during directional solidification.
    Li X; Fautrelle Y; Ren Z; Moreau R
    Sci Rep; 2017 Apr; 7():45834. PubMed ID: 28367991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.
    Peng P; Li X; Li J; Su Y; Guo J
    Sci Rep; 2016 Apr; 6():24315. PubMed ID: 27066761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On migration of primary/peritectic interface during interrupted directional solidification of Sn-Ni peritectic alloy.
    Peng P; Li X; Li J; Su Y; Guo J; Fu H
    Sci Rep; 2016 Apr; 6():24512. PubMed ID: 27075006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition.
    Peng P; Li X; Li J; Su Y; Guo J; Fu H
    Sci Rep; 2016 Jun; 6():27682. PubMed ID: 27270334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the transition from primary to peritectic phase growth during solidification of undercooled Ni-Zr alloy levitated by electromagnetic field.
    Lü P; Zhou K; Wang HP
    Sci Rep; 2016 Dec; 6():39042. PubMed ID: 27958359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability.
    Lo TS; Karma A; Plapp M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031504. PubMed ID: 11308654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of aluminum alloy functionally graded material using directional solidification under an axial static magnetic field.
    Hu S; Gagnoud A; Fautrelle Y; Moreau R; Li X
    Sci Rep; 2018 May; 8(1):7945. PubMed ID: 29786064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Microstructure Evolution and Phase Selection of Peritectic Cuce Alloy During High-Temperature Gradient Directional Solidification.
    Xu Y; Huang Z; Chen Y; Xiao J; Hao J; Hou X; Liu L
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32092845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between α(Ti) nucleation and growth during peritectic solidification investigated by phase-field simulations.
    Eiken J; Apel M; Witusiewicz VT; Zollinger J; Hecht U
    J Phys Condens Matter; 2009 Nov; 21(46):464104. PubMed ID: 21715868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Peritectic Solidification Morphologies by Using the Binary Organic Model System TRIS-NPG.
    Mogeritsch JP; Abdi M; Ludwig A
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-monotonic changes in critical solidification rates for stability of liquid-solid interfaces with static magnetic fields.
    Ren WL; Fan YF; Feng JW; Zhong YB; Yu JB; Ren ZM; Liaw PK
    Sci Rep; 2016 Feb; 6():20598. PubMed ID: 26846708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of growth rate on microstructure evolution in directionally solidified Ti-47Al alloy.
    Liu T; Tao J; Cai X; Chen D; Li J; Luo L; Cheng Z; Su Y
    Heliyon; 2022 Jan; 8(1):e08704. PubMed ID: 35028474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Growth Rate and Magnetic Field on Microstructure and Properties of Directionally Solidified Ag-Cu Eutectic Alloy.
    Zuo X; Zhao C; Zhang L; Wang E
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy.
    Wang J; Yue S; Fautrelle Y; Lee PD; Li X; Zhong Y; Ren Z
    Sci Rep; 2016 Apr; 6():24585. PubMed ID: 27091383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct formation of peritectic phase but no primary phase appearance within Ni83.25Zr16.75 peritectic alloy during free fall.
    Lü P; Wang HP
    Sci Rep; 2016 Mar; 6():22641. PubMed ID: 26935165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of the Peritectic Phase Transition in Fe-C Alloys.
    Fang H; Tang Q; Zhang Q; Fan Y; Pan S; Rettenmayr M; Zhu M
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-field simulation of peritectic solidification closely coupled with directional solidification experiments in an Al-36 wt% Ni alloy.
    Siquieri R; Doernberg E; Emmerich H; Schmid-Fetzer R
    J Phys Condens Matter; 2009 Nov; 21(46):464112. PubMed ID: 21715876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness.
    Guo J; Wen G; Pu D; Tang P
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29642452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.