These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30006560)

  • 1. Vertical-type two-dimensional hole gas diamond metal oxide semiconductor field-effect transistors.
    Oi N; Inaba M; Okubo S; Tsuyuzaki I; Kageura T; Onoda S; Hiraiwa A; Kawarada H
    Sci Rep; 2018 Jul; 8(1):10660. PubMed ID: 30006560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics.
    Matsumoto T; Kato H; Oyama K; Makino T; Ogura M; Takeuchi D; Inokuma T; Tokuda N; Yamasaki S
    Sci Rep; 2016 Aug; 6():31585. PubMed ID: 27545201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications.
    Kawarada H; Yamada T; Xu D; Tsuboi H; Kitabayashi Y; Matsumura D; Shibata M; Kudo T; Inaba M; Hiraiwa A
    Sci Rep; 2017 Feb; 7():42368. PubMed ID: 28218234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enhanced two-dimensional hole gas (2DHG) C-H diamond with positive surface charge model for advanced normally-off MOSFET devices.
    Alhasani R; Yabe T; Iyama Y; Oi N; Imanishi S; Nguyen QN; Kawarada H
    Sci Rep; 2022 Mar; 12(1):4203. PubMed ID: 35273177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Overview of High-
    Liu J; Koide Y
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29867032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas.
    Zhang K; Sumiya M; Liao M; Koide Y; Sang L
    Sci Rep; 2016 Mar; 6():23683. PubMed ID: 27021054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Temperature and High-Electron Mobility Metal-Oxide-Semiconductor Field-Effect Transistors Based on N-Type Diamond.
    Liao M; Sun H; Koizumi S
    Adv Sci (Weinh); 2024 Apr; 11(13):e2306013. PubMed ID: 38243629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface channel MESFETs on hydrogenated diamond.
    Conte G; Giovine E; Bolshakov A; Ralchenko V; Konov V
    Nanotechnology; 2012 Jan; 23(2):025201. PubMed ID: 22166514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doping-Free Arsenene Heterostructure Metal-Oxide-Semiconductor Field Effect Transistors Enabled by Thickness Modulated Semiconductor to Metal Transition in Arsenene.
    Seo D; Chang J
    Sci Rep; 2019 Mar; 9(1):3988. PubMed ID: 30850758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralow-power complementary metal-oxide-semiconductor inverters constructed on Schottky barrier modified nanowire metal-oxide-semiconductor field-effect-transistors.
    Ma RM; Peng RM; Wen XN; Dai L; Liu C; Sun T; Xu WJ; Qin GG
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6428-31. PubMed ID: 21137742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and fabrication of high-performance diamond triple-gate field-effect transistors.
    Liu J; Ohsato H; Wang X; Liao M; Koide Y
    Sci Rep; 2016 Oct; 6():34757. PubMed ID: 27708372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.
    Kanaki T; Yamasaki H; Koyama T; Chiba D; Ohya S; Tanaka M
    Sci Rep; 2018 May; 8(1):7195. PubMed ID: 29739954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-electron effects in non-overlapped multiple-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors.
    Lee W; Su P
    Nanotechnology; 2009 Feb; 20(6):065202. PubMed ID: 19417374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance enhancement of multiple-gate ZnO metal-oxide-semiconductor field-effect transistors fabricated using self-aligned and laser interference photolithography techniques.
    Lee HY; Huang HL; Tseng CY
    Nanoscale Res Lett; 2014; 9(1):242. PubMed ID: 24948884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si.
    Svensson J; Dey AW; Jacobsson D; Wernersson LE
    Nano Lett; 2015 Dec; 15(12):7898-904. PubMed ID: 26595174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ axially doped n-channel silicon nanowire field-effect transistors.
    Ho TT; Wang Y; Eichfeld S; Lew KK; Liu B; Mohney SE; Redwing JM; Mayer TS
    Nano Lett; 2008 Dec; 8(12):4359-64. PubMed ID: 19367848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diamond FinFET without Hydrogen Termination.
    Huang B; Bai X; Lam SK; Tsang KK
    Sci Rep; 2018 Feb; 8(1):3063. PubMed ID: 29449602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalability of Schottky barrier metal-oxide-semiconductor transistors.
    Jang M
    Nano Converg; 2016; 3(1):11. PubMed ID: 28191421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normally-off β-Ga
    Jang CH; Atmaca G; Cha HY
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable horizontal-vertical carrier transport in graphene/HfZrO field-effect transistors.
    Dragoman M; Modreanu M; Povey IM; Dinescu A; Dragoman D
    Nanotechnology; 2020 Jan; 31(2):025203. PubMed ID: 31557742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.