These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30006576)

  • 41. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics.
    Arshavsky-Graham S; Segal E
    Adv Biochem Eng Biotechnol; 2022; 179():247-265. PubMed ID: 32435872
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Latest advances and perspectives of liquid biopsy for cancer diagnostics driven by microfluidic on-chip assays.
    Xie Y; Xu X; Wang J; Lin J; Ren Y; Wu A
    Lab Chip; 2023 Jun; 23(13):2922-2941. PubMed ID: 37291937
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Packaging commercial CMOS chips for lab on a chip integration.
    Datta-Chaudhuri T; Abshire P; Smela E
    Lab Chip; 2014 May; 14(10):1753-66. PubMed ID: 24682025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.
    Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R
    Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid and sensitive point-of-need aflatoxin B1 testing in feedstuffs using a smartphone-powered mobile microfluidic lab-on-fiber device.
    Zhuo Y; Xu W; Chen Y; Long F
    J Hazard Mater; 2023 Oct; 460():132406. PubMed ID: 37666172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Frequency-specific, valveless flow control in insect-mimetic microfluidic devices.
    Chatterjee K; Graybill PM; Socha JJ; Davalos RV; Staples AE
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33561847
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Smartphone-coupled three-layered paper-based microfluidic chips demonstrating stereoscopic capillary-driven fluid transport towards colorimetric detection of pesticides.
    Wu H; Chen J; Yang Y; Yu W; Chen Y; Lin P; Liang K
    Anal Bioanal Chem; 2022 Feb; 414(5):1759-1772. PubMed ID: 35059790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complex Nucleic Acid Hybridization Reactions inside Capillary-Driven Microfluidic Chips.
    Salva ML; Rocca M; Hu Y; Delamarche E; Niemeyer CM
    Small; 2020 Dec; 16(49):e2005476. PubMed ID: 33201612
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water.
    Lee S; Thio SK; Park SY; Bae S
    Harmful Algae; 2019 Sep; 88():101638. PubMed ID: 31582154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics.
    Islam MN; Yost JW; Gagnon ZR
    Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detector-Free Photothermal Bar-Chart Microfluidic Chips (PT-Chips) for Visual Quantitative Detection of Biomarkers.
    Zhou W; Fu G; Li X
    Anal Chem; 2021 Jun; 93(21):7754-7762. PubMed ID: 33999603
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cost-effective smartphone-based reconfigurable electrochemical instrument for alcohol determination in whole blood samples.
    Aymerich J; Márquez A; Terés L; Muñoz-Berbel X; Jiménez C; Domínguez C; Serra-Graells F; Dei M
    Biosens Bioelectron; 2018 Oct; 117():736-742. PubMed ID: 30014948
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics.
    Ryzhkov VV; Echeistov VV; Zverev AV; Baklykov DA; Konstantinova T; Lotkov ES; Ryazantcev PG; Sh Alibekov R; Kuguk AK; Aleksandrov AR; Krasko ES; Barbasheva AA; Ryzhikov IA; Rodionov IA
    Lab Chip; 2023 Jun; 23(12):2789-2797. PubMed ID: 37198997
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aspects of Point-of-Care Diagnostics for Personalized Health Wellness.
    Kumar S; Nehra M; Khurana S; Dilbaghi N; Kumar V; Kaushik A; Kim KH
    Int J Nanomedicine; 2021; 16():383-402. PubMed ID: 33488077
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications.
    Pires NM; Dong T; Hanke U; Hoivik N
    Sensors (Basel); 2014 Aug; 14(8):15458-79. PubMed ID: 25196161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review.
    Nadar SS; Patil PD; Tiwari MS; Ahirrao DJ
    Crit Rev Biotechnol; 2021 Nov; 41(7):1046-1080. PubMed ID: 33730940
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring the Effective Density of Airborne Nanoparticles in Real Time Using a Microfluidic Nanoparticle Analysis Chip.
    Kwon HB; Song WY; Lee TH; Lee SS; Kim YJ
    ACS Sens; 2021 Jan; 6(1):137-147. PubMed ID: 33404228
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gravity-Driven Microfluidic Siphons: Fluidic Characterization and Application to Quantitative Immunoassays.
    Reis NM; Needs SH; Jegouic SM; Gill KK; Sirivisoot S; Howard S; Kempe J; Bola S; Al-Hakeem K; Jones IM; Prommool T; Luangaram P; Avirutnan P; Puttikhunt C; Edwards AD
    ACS Sens; 2021 Dec; 6(12):4338-4348. PubMed ID: 34854666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.