BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30006745)

  • 1. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
    Contarino C; Toro EF
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1687-1714. PubMed ID: 30006745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations.
    Li H; Mei Y; Maimon N; Padera TP; Baish JW; Munn LL
    Sci Rep; 2019 Jul; 9(1):10649. PubMed ID: 31337769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions.
    Elich H; Barrett A; Shankar V; Fogelson AL
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1941-1968. PubMed ID: 34275062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements.
    Macdonald AJ; Arkill KP; Tabor GR; McHale NG; Winlove CP
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H305-13. PubMed ID: 18487438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contraction of collecting lymphatics: organization of pressure-dependent rate for multiple lymphangions.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1513-1532. PubMed ID: 29948540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical forces and lymphatic transport.
    Breslin JW
    Microvasc Res; 2014 Nov; 96():46-54. PubMed ID: 25107458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lymphangion coordination minimally affects mean flow in lymphatic vessels.
    Venugopal AM; Stewart RH; Laine GA; Dongaonkar RM; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1183-9. PubMed ID: 17468331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrainment of Lymphatic Contraction to Oscillatory Flow.
    Mukherjee A; Hooks J; Nepiyushchikh Z; Dixon JB
    Sci Rep; 2019 Apr; 9(1):5840. PubMed ID: 30967585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Lymphatic Vascular System: Does Nonuniform Lymphangion Length Limit Flow-Rate?
    Bertram CD
    J Biomech Eng; 2024 Sep; 146(9):. PubMed ID: 38558115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
    Bertram CD; Macaskill C; Moore JE
    J Biomech Eng; 2011 Jan; 133(1):011008. PubMed ID: 21186898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the microlymphatic valve in the propagation of spontaneous rhythmical lymphatic motion in rat.
    Zhang J; Li H; Xiu R
    Clin Hemorheol Microcirc; 2000; 23(2-4):349-53. PubMed ID: 11321462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(7):H847-60. PubMed ID: 26747501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Contractions of the lymphangion under low filling conditions and the absence of stretching stimuli. The possibility of the sucking effect].
    Gashev AA; Orlov RS; Zawieja DC
    Ross Fiziol Zh Im I M Sechenova; 2001 Jan; 87(1):97-109. PubMed ID: 11227869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational model of a network of initial lymphatics and pre-collectors with permeable interstitium.
    Ikhimwin BO; Bertram CD; Jamalian S; Macaskill C
    Biomech Model Mechanobiol; 2020 Apr; 19(2):661-676. PubMed ID: 31696326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.
    Kornuta JA; Nepiyushchikh Z; Gasheva OY; Mukherjee A; Zawieja DC; Dixon JB
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1122-34. PubMed ID: 26333787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
    Jamalian S; Bertram CD; Richardson WJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(12):H1709-17. PubMed ID: 24124185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.
    Davis MJ; Rahbar E; Gashev AA; Zawieja DC; Moore JE
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H48-60. PubMed ID: 21460194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph.
    Venugopal AM; Quick CM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H303-9. PubMed ID: 19028799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valve-related modes of pump failure in collecting lymphatics: numerical and experimental investigation.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1987-2003. PubMed ID: 28699120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics.
    Dixon JB; Greiner ST; Gashev AA; Cote GL; Moore JE; Zawieja DC
    Microcirculation; 2006; 13(7):597-610. PubMed ID: 16990218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.