These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30006874)

  • 1. The Effect of Dihydroquercetin on Catalytic Activity of Iron (II) Ions in the Fenton Reaction.
    Babenkova IV; Osipov AN; Teselkin YO
    Bull Exp Biol Med; 2018 Jul; 165(3):347-350. PubMed ID: 30006874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free-radical scavenging capacity using the fenton reaction with rhodamine B as the spectrophotometric indicator.
    Yu F; Xu D; Lei R; Li N; Li K
    J Agric Food Chem; 2008 Feb; 56(3):730-5. PubMed ID: 18189354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonate-radical-anions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate.
    Illés E; Mizrahi A; Marks V; Meyerstein D
    Free Radic Biol Med; 2019 Feb; 131():1-6. PubMed ID: 30458276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Peroxidation of lecithin in the presence of dihydroquercetin and its complex with ferrous iron ions].
    Shatalin IuV; Shmarev AN
    Biofizika; 2010; 55(1):75-82. PubMed ID: 20184144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions.
    Saran M; Michel C; Stettmaier K; Bors W
    Free Radic Res; 2000 Nov; 33(5):567-79. PubMed ID: 11200089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of some parameters on the rate of the catalysed decomposition of hydrogen peroxide by iron(III)-nitrilotriacetate in water.
    De Laat J; Dao YH; El Najjar NH; Daou C
    Water Res; 2011 Nov; 45(17):5654-64. PubMed ID: 21920579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction.
    Lin ZR; Zhao L; Dong YH
    Chemosphere; 2015 Dec; 141():7-12. PubMed ID: 26069944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonenzymatic reaction of dihydroxyacetone with hydrogen peroxide enhanced via a Fenton reaction.
    Maksimović V; Mojović M; Neumann G; Vucinić Z
    Ann N Y Acad Sci; 2005 Jun; 1048():461-5. PubMed ID: 16154978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.
    Shi F; Zhang P; Mao Y; Wang C; Zheng M; Zhao Z
    Biochem Biophys Res Commun; 2017 Jan; 483(1):159-164. PubMed ID: 28042034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II.
    Maezono T; Tokumura M; Sekine M; Kawase Y
    Chemosphere; 2011 Mar; 82(10):1422-30. PubMed ID: 21146853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fenton Reaction in vivo and in vitro. Possibilities and Limitations.
    Muranov KO
    Biochemistry (Mosc); 2024 Jan; 89(Suppl 1):S112-S126. PubMed ID: 38621747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fenton-dependent damage to carbohydrates: free radical scavenging activity of some simple sugars.
    Morelli R; Russo-Volpe S; Bruno N; Lo Scalzo R
    J Agric Food Chem; 2003 Dec; 51(25):7418-25. PubMed ID: 14640593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants.
    Yang XJ; Xu XM; Xu J; Han YF
    J Am Chem Soc; 2013 Oct; 135(43):16058-61. PubMed ID: 24124647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of glutathione on Fenton reagent-dependent radical production and DNA oxidation.
    Spear N; Aust SD
    Arch Biochem Biophys; 1995 Dec; 324(1):111-6. PubMed ID: 7503544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carotenoids as scavengers of free radicals in a Fenton reaction: antioxidants or pro-oxidants?
    Polyakov NE; Leshina TV; Konovalova TA; Kispert LD
    Free Radic Biol Med; 2001 Aug; 31(3):398-404. PubMed ID: 11461778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent probes for the detection of catalytic Fe(II) ion.
    Hirayama T
    Free Radic Biol Med; 2019 Mar; 133():38-45. PubMed ID: 29990536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidizing intermediates generated in the Fenton reagent: kinetic arguments against the intermediacy of the hydroxyl radical.
    Wink DA; Wink CB; Nims RW; Ford PC
    Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):11-5. PubMed ID: 7843082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.