These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 30006941)
1. First aspects on acetate metabolism in the yeast Dekkera bruxellensis: a few keys for improving ethanol fermentation. Teles GH; da Silva JM; Mendonça AA; de Morais Junior MA; de Barros Pita W Yeast; 2018 Oct; 35(10):577-584. PubMed ID: 30006941 [TBL] [Abstract][Full Text] [Related]
2. Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. Leite FC; Basso TO; Pita Wde B; Gombert AK; Simões DA; de Morais MA FEMS Yeast Res; 2013 Feb; 13(1):34-43. PubMed ID: 23078341 [TBL] [Abstract][Full Text] [Related]
3. Nitrate boosts anaerobic ethanol production in an acetate-dependent manner in the yeast Dekkera bruxellensis. Peña-Moreno IC; Castro Parente D; da Silva JM; Andrade Mendonça A; Rojas LAV; de Morais Junior MA; de Barros Pita W J Ind Microbiol Biotechnol; 2019 Feb; 46(2):209-220. PubMed ID: 30539327 [TBL] [Abstract][Full Text] [Related]
4. Metabolic and biotechnological insights on the analysis of the Pdh bypass and acetate production in the yeast Dekkera bruxellensis. Teles GH; da Silva JM; Xavier MR; de Souza RB; de Barros Pita W; de Morais Junior MA J Biotechnol; 2022 Aug; 355():42-52. PubMed ID: 35760147 [TBL] [Abstract][Full Text] [Related]
5. The biotechnological potential of the yeast Dekkera bruxellensis. de Barros Pita W; Teles GH; Peña-Moreno IC; da Silva JM; Ribeiro KC; de Morais Junior MA World J Microbiol Biotechnol; 2019 Jun; 35(7):103. PubMed ID: 31236799 [TBL] [Abstract][Full Text] [Related]
6. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae. Meneghin MC; Bassi AP; Codato CB; Reis VR; Ceccato-Antonini SR Yeast; 2013 Aug; 30(8):295-305. PubMed ID: 23658026 [TBL] [Abstract][Full Text] [Related]
7. Potassium metabisulphite as a potential biocide against Dekkera bruxellensis in fuel ethanol fermentations. Bassi AP; Paraluppi AL; Reis VR; Ceccato-Antonini SR Lett Appl Microbiol; 2015 Mar; 60(3):248-58. PubMed ID: 25421952 [TBL] [Abstract][Full Text] [Related]
8. Effects of single and combined cell treatments based on low pH and high concentrations of ethanol on the growth and fermentation of Dekkera bruxellensis and Saccharomyces cerevisiae. Bassi AP; da Silva JC; Reis VR; Ceccato-Antonini SR World J Microbiol Biotechnol; 2013 Sep; 29(9):1661-76. PubMed ID: 23536198 [TBL] [Abstract][Full Text] [Related]
9. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis. Blomqvist J; South E; Tiukova I; Momeni MH; Hansson H; Ståhlberg J; Horn SJ; Schnürer J; Passoth V Lett Appl Microbiol; 2011 Jul; 53(1):73-8. PubMed ID: 21535044 [TBL] [Abstract][Full Text] [Related]
10. The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes. de Barros Pita W; Leite FC; de Souza Liberal AT; Simões DA; de Morais MA Antonie Van Leeuwenhoek; 2011 Jun; 100(1):99-107. PubMed ID: 21350883 [TBL] [Abstract][Full Text] [Related]
12. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Pereira LF; Bassi AP; Avansini SH; Neto AG; Brasileiro BT; Ceccato-Antonini SR; de Morais MA Antonie Van Leeuwenhoek; 2012 Mar; 101(3):529-39. PubMed ID: 22041979 [TBL] [Abstract][Full Text] [Related]
13. High intracellular trehalase activity prevents the storage of trehalose in the yeast Dekkera bruxellensis. Leite FC; Leite DV; Pereira LF; de Barros Pita W; de Morais MA Lett Appl Microbiol; 2016 Sep; 63(3):210-4. PubMed ID: 27341694 [TBL] [Abstract][Full Text] [Related]
14. Distribution of Dekkera bruxellensis in a sugarcane-based fuel ethanol fermentation plant. da Silva TC; Leite FC; De Morais MA Lett Appl Microbiol; 2016 Apr; 62(4):354-8. PubMed ID: 26928357 [TBL] [Abstract][Full Text] [Related]
15. Interaction of Saccharomyces cerevisiae-Lactobacillus fermentum-Dekkera bruxellensis and feedstock on fuel ethanol fermentation. Bassi APG; Meneguello L; Paraluppi AL; Sanches BCP; Ceccato-Antonini SR Antonie Van Leeuwenhoek; 2018 Sep; 111(9):1661-1672. PubMed ID: 29488182 [TBL] [Abstract][Full Text] [Related]
16. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates. Pereira LF; Lucatti E; Basso LC; de Morais MA Antonie Van Leeuwenhoek; 2014 Mar; 105(3):481-9. PubMed ID: 24370978 [TBL] [Abstract][Full Text] [Related]
17. Volatile phenols are produced by strains of Dekkera bruxellensis under Brazilian fuel ethanol industry-like conditions. Silva LFL; Réco AS; Peña R; Ganga MA; Ceccato-Antonini SR FEMS Microbiol Lett; 2018 Nov; 365(21):. PubMed ID: 30239698 [TBL] [Abstract][Full Text] [Related]
18. Proteome responses to nitrate in bioethanol production contaminant Dekkera bruxellensis. Neto AG; Pestana-Calsa MC; de Morais MA; Calsa T J Proteomics; 2014 Jun; 104():104-11. PubMed ID: 24667144 [TBL] [Abstract][Full Text] [Related]
19. Dekkera bruxellensis--spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness. Blomqvist J; Passoth V FEMS Yeast Res; 2015 Jun; 15(4):fov021. PubMed ID: 25956542 [TBL] [Abstract][Full Text] [Related]
20. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae. Tiukova I; Eberhard T; Passoth V Biotechnol Appl Biochem; 2014; 61(1):40-4. PubMed ID: 23772864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]