These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 30006949)
1. Inexpensive but Highly Efficient Co-Mn Mixed-Oxide Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Rao KTV; Rogers JL; Souzanchi S; Dessbesell L; Ray MB; Xu CC ChemSusChem; 2018 Sep; 11(18):3323-3334. PubMed ID: 30006949 [TBL] [Abstract][Full Text] [Related]
2. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494 [TBL] [Abstract][Full Text] [Related]
3. Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Holey 2 D Mn Bao L; Sun FZ; Zhang GY; Hu TL ChemSusChem; 2020 Feb; 13(3):548-555. PubMed ID: 31714031 [TBL] [Abstract][Full Text] [Related]
4. Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst. Wang KF; Liu CL; Sui KY; Guo C; Liu CZ Chembiochem; 2018 Apr; 19(7):654-659. PubMed ID: 29334175 [TBL] [Abstract][Full Text] [Related]
5. Ruthenium Supported on High-Surface-Area Zirconia as an Efficient Catalyst for the Base-Free Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Pichler CM; Al-Shaal MG; Gu D; Joshi H; Ciptonugroho W; Schüth F ChemSusChem; 2018 Jul; 11(13):2083-2090. PubMed ID: 29761659 [TBL] [Abstract][Full Text] [Related]
6. Hydroxy and surface oxygen effects on 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid on β-MnO Tharat B; Ngamwongwan L; Seehamongkol T; Rungtaweevoranit B; Nonkumwong J; Suthirakun S; Faungnawakij K; Chanlek N; Plucksacholatarn A; Nimsaila W; Prommin C; Junkaew A Nanoscale; 2024 Jan; 16(2):678-690. PubMed ID: 37964613 [TBL] [Abstract][Full Text] [Related]
7. Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts. Pal P; Saravanamurugan S ChemSusChem; 2019 Jan; 12(1):145-163. PubMed ID: 30362263 [TBL] [Abstract][Full Text] [Related]
8. Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural. Zuo X; Venkitasubramanian P; Martin KJ; Subramaniam B ChemSusChem; 2022 Jul; 15(13):e202102050. PubMed ID: 34913609 [TBL] [Abstract][Full Text] [Related]
9. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst. Liu J; Wen S; Wang F; Zhu X; Zeng Z; Yin D Front Chem; 2022; 10():853112. PubMed ID: 35372283 [TBL] [Abstract][Full Text] [Related]
10. Preparation of the Mn/Co mixed oxide catalysts for low-temperature CO oxidation reaction. Ghiassee M; Rezaei M; Meshkani F; Mobini S Environ Sci Pollut Res Int; 2021 Jan; 28(1):379-388. PubMed ID: 32808130 [TBL] [Abstract][Full Text] [Related]
11. Direct conversion of cellulose to 5-hydroxymethylfurfural (HMF) using an efficient and inexpensive boehmite catalyst. Tang Z; Su J Carbohydr Res; 2019 Jul; 481():52-59. PubMed ID: 31247450 [TBL] [Abstract][Full Text] [Related]
12. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Peng Y; Qiu B; Ding S; Hu M; Zhang Y; Jiao Y; Fan X; Parlett CMA Chempluschem; 2024 Jan; 89(1):e202300545. PubMed ID: 37884457 [TBL] [Abstract][Full Text] [Related]
13. Base-Free Oxidation of HMF to FDCA over Ru/Cu-Co-O·MgO under Aqueous Conditions. Zhang S; Chu G; Wang S; Ma J; Wang C Molecules; 2024 Jul; 29(13):. PubMed ID: 38999165 [TBL] [Abstract][Full Text] [Related]
14. Au-Based Bimetallic Catalysts for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Reaction Conditions. Su J; Liu Z; Tan Y; Xiao Y; Zhan N; Ding Y Molecules; 2024 Jun; 29(12):. PubMed ID: 38930789 [TBL] [Abstract][Full Text] [Related]
15. Cobalt-Ceria Binary Oxide Nanojunctions for Aqueous-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid: The Role of Interfaces. Chen A; Li T; Zhang Q; Zhu H Langmuir; 2023 Aug; 39(33):11750-11759. PubMed ID: 37556464 [TBL] [Abstract][Full Text] [Related]
16. Molten Salt-Assisted Synthesis of Co/N-Doped Carbon Hybrids for Aqueous-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Kumar R; Zhu Z; Chen C; Cai W; Woon-Chung Wong J; Zhao J ChemSusChem; 2022 Nov; 15(22):e202201333. PubMed ID: 36120725 [TBL] [Abstract][Full Text] [Related]
17. Optimized Nb-Based Zeolites as Catalysts for the Synthesis of Succinic Acid and FDCA. El Fergani M; Candu N; Tudorache M; Granger P; Parvulescu VI; Coman SM Molecules; 2020 Oct; 25(21):. PubMed ID: 33105761 [TBL] [Abstract][Full Text] [Related]
18. Aerobic oxidation of hydroxymethylfurfural and furfural by using heterogeneous Cox Oy -N@C catalysts. Deng J; Song HJ; Cui MS; Du YP; Fu Y ChemSusChem; 2014 Dec; 7(12):3334-40. PubMed ID: 25353711 [TBL] [Abstract][Full Text] [Related]
19. Enabling Efficient Aerobic 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid in Water by Interfacial Engineering Reinforced Cu-Mn Oxides Hollow Nanofiber. Dong X; Wang X; Song H; Zhang Y; Yuan A; Guo Z; Wang Q; Yang F ChemSusChem; 2022 Jul; 15(13):e202200076. PubMed ID: 35170240 [TBL] [Abstract][Full Text] [Related]
20. Hierarchical Nickel-Cobalt-Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals. Gao L; Bao Y; Gan S; Sun Z; Song Z; Han D; Li F; Niu L ChemSusChem; 2018 Aug; 11(15):2547-2553. PubMed ID: 29885212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]