These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30007257)

  • 21. Gravity-driven membrane coupled with oxidation technology to modify the surface properties and biofilm formation: Biofouling mitigation.
    Du Y; Zhou W; Zhang L; Liu X
    J Environ Manage; 2023 Nov; 345():118444. PubMed ID: 37385200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators.
    Siddiqui A; Lehmann S; Bucs SS; Fresquet M; Fel L; Prest EIEC; Ogier J; Schellenberg C; van Loosdrecht MCM; Kruithof JC; Vrouwenvelder JS
    Water Res; 2017 Mar; 110():281-287. PubMed ID: 28027527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofouling and pollutant removal during long-term operation of an anaerobic membrane bioreactor treating municipal wastewater.
    Herrera-Robledo M; Morgan-Sagastume JM; Noyola A
    Biofouling; 2010 Jan; 26(1):23-30. PubMed ID: 20390553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced hydraulic cleanability of biofilms developed under a low phosphorus concentration in reverse osmosis membrane systems.
    Javier L; Farhat NM; Vrouwenvelder JS
    Water Res X; 2021 Jan; 10():100085. PubMed ID: 33385157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of membrane property and feed water organic matter quality on long-term performance of the gravity-driven membrane filtration process.
    Lee D; Lee Y; Choi SS; Lee SH; Kim KW; Lee Y
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1152-1162. PubMed ID: 28721617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofilm Formation and Biofouling Development on Different Ultrafiltration Membranes by Natural Anaerobes from an Anaerobic Membrane Bioreactor.
    Yang Y; Bar-Zeev E; Oron G; Herzberg M; Bernstein R
    Environ Sci Technol; 2022 Jul; 56(14):10339-10348. PubMed ID: 35786926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biofouling in forward osmosis systems: An experimental and numerical study.
    Bucs SS; Valladares Linares R; Vrouwenvelder JS; Picioreanu C
    Water Res; 2016 Dec; 106():86-97. PubMed ID: 27697688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability.
    Farhat NM; Javier L; Van Loosdrecht MCM; Kruithof JC; Vrouwenvelder JS
    Water Res; 2019 Mar; 150():1-11. PubMed ID: 30508707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel strategies for diagnosing the cause of short-term organic fouling in ultrafiltration.
    Kim HC
    Environ Technol; 2016; 37(12):1539-49. PubMed ID: 26586304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation of microcystins during gravity-driven membrane (GDM) ultrafiltration.
    Kohler E; Villiger J; Posch T; Derlon N; Shabarova T; Morgenroth E; Pernthaler J; Blom JF
    PLoS One; 2014; 9(11):e111794. PubMed ID: 25369266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of fouling formation in membrane ultrafiltration by ultrasound irradiation.
    Naddeo V; Belgiorno V; Borea L; Secondes MF; Ballesteros F
    Environ Technol; 2015; 36(9-12):1299-307. PubMed ID: 25384626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A combination of membrane relaxation and shear stress significantly improve the flux of gravity-driven membrane system.
    Shi D; Liu Y; Fu W; Li J; Fang Z; Shao S
    Water Res; 2020 May; 175():115694. PubMed ID: 32182538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of fouling formation and evolution on hollow fibre membrane: effects of ageing and chemical exposure on biofoulant.
    Xu Q; Ye Y; Chen V; Wen X
    Water Res; 2015 Jan; 68():182-93. PubMed ID: 25462727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of water temperature on biofouling development in reverse osmosis membrane systems.
    Farhat NM; Vrouwenvelder JS; Van Loosdrecht MCM; Bucs SS; Staal M
    Water Res; 2016 Oct; 103():149-159. PubMed ID: 27450353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient.
    Dreszer C; Flemming HC; Zwijnenburg A; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Mar; 50():200-11. PubMed ID: 24374131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feed substrates influence biofilm formation on reverse osmosis membranes and their cleaning efficiency.
    Marka S; Anand S
    J Dairy Sci; 2018 Jan; 101(1):84-95. PubMed ID: 29103718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological control of biofilms on membranes by metazoans.
    Klein T; Zihlmann D; Derlon N; Isaacson C; Szivak I; Weissbrodt DG; Pronk W
    Water Res; 2016 Jan; 88():20-29. PubMed ID: 26458189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-situ cathodic electrolysis coupled with hydraulic backwash inhibited biofilm formation on a backwashable carbon nanotube membrane.
    Fang G; Wang J; Li M; Yang Q; Huang H
    Sci Total Environ; 2023 Jun; 878():163130. PubMed ID: 37001670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of biofilm formation on membrane performance in submerged membrane bioreactors.
    Mafirad S; Mehrnia MR; Azami H; Sarrafzadeh MH
    Biofouling; 2011 May; 27(5):477-85. PubMed ID: 21604217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the archaeal community fouling a membrane bioreactor.
    Luo J; Zhang J; Tan X; McDougald D; Zhuang G; Fane AG; Kjelleberg S; Cohen Y; Rice SA
    J Environ Sci (China); 2015 Mar; 29():115-23. PubMed ID: 25766019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.