BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30007481)

  • 1. Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity.
    Motoda T; Yamaguchi M; Tsuyama T; Kamei I
    J Biosci Bioeng; 2019 Jan; 127(1):66-72. PubMed ID: 30007481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of sugar from pulp and xylitol from xylose by pyruvate decarboxylase-negative white-rot fungus Phlebia sp. MG-60.
    Tsuyama T; Yamaguchi M; Kamei I
    Bioresour Technol; 2017 Aug; 238():241-247. PubMed ID: 28433914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of ethanol fermentation mechanism of ethanol producing white-rot fungus Phlebia sp. MG-60 by RNA-seq.
    Wang J; Suzuki T; Dohra H; Takigami S; Kako H; Soga A; Kamei I; Mori T; Kawagishi H; Hirai H
    BMC Genomics; 2016 Aug; 17(1):616. PubMed ID: 27515927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulation of MAP kinase HOG1 gene of white-rot fungus Phlebia sp. MG-60 inhibits the ethanol fermentation and mycelial growth.
    Motoda T; Chen FC; Tsuyama T; Tokumoto Y; Kijidani Y; Kamei I
    Biosci Biotechnol Biochem; 2023 Jan; 87(2):217-227. PubMed ID: 36610726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624.
    Wang J; Hirabayashi S; Mori T; Kawagishi H; Hirai H
    J Biosci Bioeng; 2016 Jul; 122(1):17-21. PubMed ID: 26766784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of a manganese peroxidase isozyme 2 transgene in the ethanologenic white rot fungus Phlebia sp. strain MG-60.
    Yamasaki Y; Yamaguchi M; Yamagishi K; Hirai H; Kondo R; Kamei I; Meguro S
    Springerplus; 2014; 3():699. PubMed ID: 26034689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus Phlebia and bacterium Clostridium in consolidated bioprocessing.
    Tri CL; Kamei I
    Bioresour Technol; 2020 Jun; 305():123065. PubMed ID: 32120233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.
    Okamoto K; Kanawaku R; Masumoto M; Yanase H
    Enzyme Microb Technol; 2012 Feb; 50(2):96-100. PubMed ID: 22226194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60.
    Kamei I; Hirota Y; Meguro S
    Bioresour Technol; 2012 Dec; 126():137-41. PubMed ID: 23073100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of Xylose Fermentability in Phlebia Species and Direct Fermentation of Xylan by Selected Fungi.
    Kamei I; Uchida K; Ardianti V
    Appl Biochem Biotechnol; 2020 Nov; 192(3):895-909. PubMed ID: 32607899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5.
    Saha B; Cotta MA
    Bioengineered; 2012; 3(4):197-202. PubMed ID: 22705843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.
    Ishchuk OP; Voronovsky AY; Stasyk OV; Gayda GZ; Gonchar MV; Abbas CA; Sibirny AA
    FEMS Yeast Res; 2008 Nov; 8(7):1164-74. PubMed ID: 18752627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of endocrine disrupting chemicals by genetic transformants with two lignin degrading enzymes in Phlebia tremellosa.
    Kum H; Lee S; Ryu S; Choi HT
    J Microbiol; 2011 Oct; 49(5):824-7. PubMed ID: 22068501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60.
    Khuong le D; Kondo R; De Leon R; Anh TK; Meguro S; Shimizu K; Kamei I
    Bioresour Technol; 2014 Sep; 167():33-40. PubMed ID: 24968109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.
    Romaní A; Pereira F; Johansson B; Domingues L
    Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60.
    Kamei I; Hirota Y; Mori T; Hirai H; Meguro S; Kondo R
    Bioresour Technol; 2012 May; 112():137-42. PubMed ID: 22425400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata.
    Mäkelä MR; Lundell T; Hatakka A; Hildén K
    Fungal Biol; 2013 Jan; 117(1):62-70. PubMed ID: 23332834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylose transport in yeast for lignocellulosic ethanol production: Current status.
    Sharma NK; Behera S; Arora R; Kumar S; Sani RK
    J Biosci Bioeng; 2018 Mar; 125(3):259-267. PubMed ID: 29196106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 Is limited by pyruvate decarboxylase.
    Huerta-Beristain G; Utrilla J; Hernández-Chávez G; Bolívar F; Gosset G; Martinez A
    J Mol Microbiol Biotechnol; 2008; 15(1):55-64. PubMed ID: 18349551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.