These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
694 related articles for article (PubMed ID: 30007604)
1. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Dong Y; Liang J; Cui Y; Xu S; Zhao N Carbohydr Polym; 2018 Oct; 197():183-193. PubMed ID: 30007604 [TBL] [Abstract][Full Text] [Related]
2. In vivo immuno-reactivity analysis of the porous three-dimensional chitosan/SiO Guo M; Dong Y; Xiao J; Gu R; Ding M; Huang T; Li J; Zhao N; Liao H J Biomed Mater Res A; 2018 May; 106(5):1223-1235. PubMed ID: 29314593 [TBL] [Abstract][Full Text] [Related]
3. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
4. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039 [TBL] [Abstract][Full Text] [Related]
5. Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds. Wang D; Liu W; Feng Q; Dong C; Liu Q; Duan L; Huang J; Zhu W; Li Z; Xiong J; Liang Y; Chen J; Sun R; Bian L; Wang D Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):969-975. PubMed ID: 27772728 [TBL] [Abstract][Full Text] [Related]
6. Development of mangiferin loaded chitosan-silica hybrid scaffolds: Physicochemical and bioactivity characterization. Demeyer S; Athipornchai A; Pabunrueang P; Trakulsujaritchok T Carbohydr Polym; 2021 Jun; 261():117905. PubMed ID: 33766383 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related]
8. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
10. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
11. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. Chen R; Chen HB; Xue PP; Yang WG; Luo LZ; Tong MQ; Zhong B; Xu HL; Zhao YZ; Yuan JD J Mater Chem B; 2021 Jan; 9(4):1107-1122. PubMed ID: 33427267 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Hu Y; Chen J; Fan T; Zhang Y; Zhao Y; Shi X; Zhang Q Colloids Surf B Biointerfaces; 2017 Sep; 157():93-100. PubMed ID: 28578273 [TBL] [Abstract][Full Text] [Related]
13. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536 [TBL] [Abstract][Full Text] [Related]
16. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related]
17. 3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects. Abdian N; Soltani Zangbar H; Etminanfar M; Hamishehkar H Int J Biol Macromol; 2024 Oct; 278(Pt 4):135014. PubMed ID: 39181354 [TBL] [Abstract][Full Text] [Related]
18. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties. Hendrikx S; Kascholke C; Flath T; Schumann D; Gressenbuch M; Schulze FP; Hacker MC; Schulz-Siegmund M Acta Biomater; 2016 Apr; 35():318-29. PubMed ID: 26925964 [TBL] [Abstract][Full Text] [Related]
19. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226 [TBL] [Abstract][Full Text] [Related]
20. Effects of in situ and physical mixing on mechanical and bioactive behaviors of nano hydroxyapatite-chitosan scaffolds. Chen J; Zhang G; Yang S; Li J; Jia H; Fang Z; Zhang Q J Biomater Sci Polym Ed; 2011; 22(15):2097-106. PubMed ID: 21067654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]