These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 30007841)
1. Quantum versus classical Monte Carlo simulation of low-energy electron transport in condensed amorphous media. Thomson RM; Kawrakow I Phys Med; 2018 Oct; 54():179-188. PubMed ID: 30007841 [TBL] [Abstract][Full Text] [Related]
2. SU-E-T-489: Quantum versus Classical Trajectory Monte Carlo Simulations of Low Energy Electron Transport. Thomson R; Kawrakow I Med Phys; 2012 Jun; 39(6Part17):3817-3818. PubMed ID: 28517446 [TBL] [Abstract][Full Text] [Related]
3. On the Monte Carlo simulation of electron transport in the sub-1 keV energy range. Thomson RM; Kawrakow I Med Phys; 2011 Aug; 38(8):4531-4. PubMed ID: 21928623 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New Model Dielectric Response Function. Emfietzoglou D; Papamichael G; Nikjoo H Radiat Res; 2017 Sep; 188(3):355-368. PubMed ID: 28650774 [TBL] [Abstract][Full Text] [Related]
5. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice. Liljequist D Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241 [TBL] [Abstract][Full Text] [Related]
6. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description. Madsen JR; Akabani G Phys Med Biol; 2014 May; 59(9):2285-305. PubMed ID: 24731979 [TBL] [Abstract][Full Text] [Related]
7. EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water. Champion C; Le Loirec C; Stosic B Int J Radiat Biol; 2012 Jan; 88(1-2):54-61. PubMed ID: 22098415 [TBL] [Abstract][Full Text] [Related]
8. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA. Bordage MC; Bordes J; Edel S; Terrissol M; Franceries X; Bardiès M; Lampe N; Incerti S Phys Med; 2016 Dec; 32(12):1833-1840. PubMed ID: 27773539 [TBL] [Abstract][Full Text] [Related]
9. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations. Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127 [TBL] [Abstract][Full Text] [Related]
10. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes. Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312 [TBL] [Abstract][Full Text] [Related]
11. The significance of electron binding corrections in Monte Carlo photon transport calculations. Williamson JF; Deibel FC; Morin RL Phys Med Biol; 1984 Sep; 29(9):1063-73. PubMed ID: 6483972 [TBL] [Abstract][Full Text] [Related]
12. A comparison between track-structure, condensed-history Monte Carlo simulations and MIRD cellular S-values. Tajik-Mansoury MA; Rajabi H; Mozdarani H Phys Med Biol; 2017 Mar; 62(5):N90-N106. PubMed ID: 28181480 [TBL] [Abstract][Full Text] [Related]
13. A comparative study on Monte Carlo simulations of electron emission from liquid water. Mehnaz ; Yang LH; Zou YB; Da B; Mao SF; Li HM; Zhao YF; Ding ZJ Med Phys; 2020 Feb; 47(2):759-771. PubMed ID: 31702062 [TBL] [Abstract][Full Text] [Related]
14. Challenges in Monte Carlo track structure modelling. Toburen LH Int J Radiat Biol; 2012 Jan; 88(1-2):2-9. PubMed ID: 21591975 [TBL] [Abstract][Full Text] [Related]
15. Calculations of absorbed fractions in small water spheres for low-energy monoenergetic electrons and the Auger-emitting radionuclides (123)Ι and (125)Ι. Bousis C; Emfietzoglou D; Nikjoo H Int J Radiat Biol; 2012 Dec; 88(12):916-21. PubMed ID: 22348619 [TBL] [Abstract][Full Text] [Related]
16. Elastic scattering cross section models used for Monte Carlo simulation of electron tracks in media of biological and medical interest. Liljequist D; Liamsuwan T; Nikjoo H Int J Radiat Biol; 2012 Jan; 88(1-2):29-37. PubMed ID: 21756208 [TBL] [Abstract][Full Text] [Related]
17. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions. Hori K; Yamaguchi T; Uezu K; Sumimoto M J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291 [TBL] [Abstract][Full Text] [Related]
18. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN. Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams. Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621 [TBL] [Abstract][Full Text] [Related]
20. Inelastic scattering of electrons in water from first principles: cross sections and inelastic mean free path for use in Monte Carlo track-structure simulations of biological damage. Koval NE; Koval P; Da Pieve F; Kohanoff J; Artacho E; Emfietzoglou D R Soc Open Sci; 2022 May; 9(5):212011. PubMed ID: 35619995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]