BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30007890)

  • 1. Environmental benign synthesis, characterization and mechanism studies of green calcium hydroxide nano-plates derived from waste oyster shells.
    Khan MD; Ahn JW; Nam G
    J Environ Manage; 2018 Oct; 223():947-951. PubMed ID: 30007890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eco-friendly deicer prepared from waste oyster shells and its deicing properties with metal corrosion.
    Chung KH; Jung SC; Park BG
    Environ Technol; 2021 Sep; 42(21):3360-3368. PubMed ID: 32043939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using pretreated waste oyster and clam shells and microwave hydrothermal treatment to recover boron from concentrated wastewater.
    Tsai HC; Lo SL; Kuo J
    Bioresour Technol; 2011 Sep; 102(17):7802-6. PubMed ID: 21723722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The recycling of oyster shells: an environmental analysis using Life Cycle Assessment.
    de Alvarenga RA; Galindro BM; Helpa Cde F; Soares SR
    J Environ Manage; 2012 Sep; 106():102-9. PubMed ID: 22579725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key Insights, Tools, and Future Prospects on Oyster Shell End-of-Life: A Critical Analysis of Sustainable Solutions.
    Bonnard M; Boury B; Parrot I
    Environ Sci Technol; 2020 Jan; 54(1):26-38. PubMed ID: 31657905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Characterization of β-Tricalcium Phosphate Derived From Haliotis sp. Shells.
    Kang KR; Piao ZG; Kim JS; Cho IA; Yim MJ; Kim BH; Oh JS; Son JS; Kim CS; Kim DK; Lee SY; Kim SG
    Implant Dent; 2017 Jun; 26(3):378-387. PubMed ID: 28157816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and experimental study on closed-loop process of preparing chitosan from crab shells.
    Wang H; Zhang H; Liu L; Ma K; Huang J; Zhang J
    Biotechnol Appl Biochem; 2023 Jun; 70(3):1421-1434. PubMed ID: 36807387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of hydroxyapatite nano-rods from oyster shell with exogenous surfactants.
    Wang Z; Jiang S; Zhao Y; Zeng M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110102. PubMed ID: 31546340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dilute gelatine on the ultrasonic thermally assisted synthesis of nano hydroxyapatite.
    Brundavanam RK; Jiang ZT; Chapman P; Le XT; Mondinos N; Fawcett D; Poinern GE
    Ultrason Sonochem; 2011 May; 18(3):697-703. PubMed ID: 21168355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.
    Lee YH; Islam SM; Hong SJ; Cho KM; Math RK; Heo JY; Kim H; Yun HD
    Biosci Biotechnol Biochem; 2010; 74(8):1517-21. PubMed ID: 20699594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified Oyster Waste Shells as a Value-Added Sorbent for Lead Removal from Water.
    Kim W; Singh R
    Bull Environ Contam Toxicol; 2022 Mar; 108(3):518-525. PubMed ID: 33704549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zeolite materials prepared using silicate waste from template synthesis of ordered mesoporous carbon.
    Kim YK; Rajesh KP; Yu JS
    J Hazard Mater; 2013 Sep; 260():350-7. PubMed ID: 23792927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry.
    Chou J; Clement G; Bursavich B; Elbers D; Cao B; Zhou W
    Environ Pollut; 2010 Jun; 158(6):2230-4. PubMed ID: 20227802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical-mechanical characteristics of crushed oyster-shell.
    Yoon GL; Kim BT; Kim BO; Han SH
    Waste Manag; 2003; 23(9):825-34. PubMed ID: 14583245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oyster shells improve anaerobic dark fermentation performances of food waste: Hydrogen production, acidification performances, and microbial community characteristics.
    Shi Z; Zhang L; Yuan H; Li X; Chang Y; Zuo X
    Bioresour Technol; 2021 Sep; 335():125268. PubMed ID: 34020157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phyto-complexation of galactomannan-stabilized calcium hydroxide and selenium-calcium hydroxide nanocomposite to enhance the seed-priming effect in Vigna radiata.
    Antony D; Yadav R; Kalimuthu R; Kumuthan MS
    Int J Biol Macromol; 2022 Jan; 194():933-944. PubMed ID: 34856219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of recycled polylactic acid/oyster shell/biomass waste composite for green packaging materials with pure natural glue and nano-fluid.
    Xiao D; Qing S; Chen P; Yu Z; Xiao H; Wang X
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26276-26304. PubMed ID: 32358757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-structured biogenic calcite: a thermal and chemical approach to folia in oyster shell.
    Lee SW; Kim YM; Kim RH; Choi CS
    Micron; 2008 Jun; 39(4):380-6. PubMed ID: 17498963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous treatment of PVC and oyster-shell wastes by mechanochemical means.
    Tongamp W; Kano J; Zhang Q; Saito F
    Waste Manag; 2008; 28(3):484-8. PubMed ID: 17475466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.