BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30007899)

  • 1. Click chemistry inspired copper sulphide nanoparticle-based fluorescence assay of kanamycin using DNA aptamer.
    Belal ASF; Ismail A; Elnaggar MM; Belal TS
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():48-54. PubMed ID: 30007899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of DNA through a fluorescence biosensor based on click chemistry.
    Yue G; Ye H; Huang X; Ye W; Qiu S; Qiu B; Lin Z; Chen G
    Analyst; 2014 Nov; 139(22):5669-73. PubMed ID: 25259370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles.
    Chen J; Li Z; Ge J; Yang R; Zhang L; Qu LB; Wang HQ; Zhang L
    Talanta; 2015 Jul; 139():226-32. PubMed ID: 25882430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence sensor for Cu(II) in the serum sample based on click chemistry.
    Wang C; Lu L; Ye W; Zheng O; Qiu B; Lin Z; Guo L; Chen G
    Analyst; 2014 Feb; 139(3):656-9. PubMed ID: 24350327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic electrophoretic non-enzymatic kanamycin assay making use of a stirring bar functionalized with gold-labeled aptamer, of a fluorescent DNA probe, and of signal amplification via hybridization chain reaction.
    Zhang K; Gan N; Hu F; Chen X; Li T; Cao J
    Mikrochim Acta; 2018 Feb; 185(3):181. PubMed ID: 29594631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescent assay for sensitive detection of kanamycin by split aptamers and DNA-based copper/silver nanoclusters.
    Liu Y; Guan B; Xu Z; Wu Y; Wang Y; Ning G
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():121953. PubMed ID: 36242838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles.
    Zhou SS; Zhang L; Cai QY; Dong ZZ; Geng X; Ge J; Li ZH
    Anal Bioanal Chem; 2016 Sep; 408(24):6711-7. PubMed ID: 27457102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensitive fluorescent sensor for quantification of alpha-fetoprotein based on immunosorbent assay and click chemistry.
    Xie Q; Weng X; Lu L; Lin Z; Xu X; Fu C
    Biosens Bioelectron; 2016 Mar; 77():46-50. PubMed ID: 26386330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer.
    Song KM; Cho M; Jo H; Min K; Jeon SH; Kim T; Han MS; Ku JK; Ban C
    Anal Biochem; 2011 Aug; 415(2):175-81. PubMed ID: 21530479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles.
    Zhang K; Cao J; Wu Y; Hu F; Li T; Wang Y; Gan N
    Mikrochim Acta; 2019 Jan; 186(2):120. PubMed ID: 30666478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples.
    Liu J; Zeng J; Tian Y; Zhou N
    Analyst; 2017 Dec; 143(1):182-189. PubMed ID: 29168847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNAzyme-powered DNA walking machine for ultrasensitive fluorescence aptasensing of kanamycin.
    Yang Z; Liu M; Li B
    Mikrochim Acta; 2020 Nov; 187(12):678. PubMed ID: 33247409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free exonuclease I-assisted signal amplification colorimetric sensor for highly sensitive detection of kanamycin.
    Li J; Liu Y; Lin H; Chen Y; Liu Z; Zhuang X; Tian C; Fu X; Chen L
    Food Chem; 2021 Jun; 347():128988. PubMed ID: 33465686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism.
    Xu Y; Han T; Li X; Sun L; Zhang Y; Zhang Y
    Anal Chim Acta; 2015 Sep; 891():298-303. PubMed ID: 26388390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA cyclic assembling control in an electrochemical strategy with MoS
    Wang L; Zhang L; Yu Y; Lin B; Wang Y; Guo M; Cao Y
    Mikrochim Acta; 2021 Jul; 188(8):264. PubMed ID: 34287718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles.
    Song Q; Wang R; Sun F; Chen H; Wang Z; Na N; Ouyang J
    Biosens Bioelectron; 2017 Jan; 87():760-763. PubMed ID: 27649332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A portable chemical sensor for histidine based on the strategy of click chemistry.
    Zhou J; Xu K; Zhou P; Zheng O; Lin Z; Guo L; Qiu B; Chen G
    Biosens Bioelectron; 2014 Jan; 51():386-90. PubMed ID: 24007674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA.
    Li F; Wang X; Sun X; Guo Y; Zhao W
    Anal Chim Acta; 2018 Nov; 1033():185-192. PubMed ID: 30172325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer.
    Li H; Sun DE; Liu Y; Liu Z
    Biosens Bioelectron; 2014 May; 55():149-56. PubMed ID: 24373954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay.
    Xing YP; Liu C; Zhou XH; Shi HC
    Sci Rep; 2015 Jan; 5():8125. PubMed ID: 25634469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.