BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30008091)

  • 1. Ultrastructure of Bone: Hierarchical Features from Nanometer to Micrometer Scale Revealed in Focused Ion Beam Sections in the TEM.
    Grandfield K; Vuong V; Schwarcz HP
    Calcif Tissue Int; 2018 Dec; 103(6):606-616. PubMed ID: 30008091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ultrastructure of bone as revealed in electron microscopy of ion-milled sections.
    Schwarcz HP
    Semin Cell Dev Biol; 2015 Oct; 46():44-50. PubMed ID: 26165821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of bending and torsional stiffnesses of bone at sub-microscale: Effect of curved mineral lamellae.
    Idkaidek A; Schwarcz H; Jasiuk I
    J Biomech; 2021 Jun; 123():110531. PubMed ID: 34051614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A search for apatite crystals in the gap zone of collagen fibrils in bone using dark-field illumination.
    Schwarcz HP; Binkley DM; Luo L; Grandfield K
    Bone; 2020 Jun; 135():115304. PubMed ID: 32145461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curved mineral platelets in bone.
    Schwarcz HP; Nassif N; Kis VK
    Acta Biomater; 2024 Jun; ():. PubMed ID: 38838906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.
    Schwarcz HP; McNally EA; Botton GA
    J Struct Biol; 2014 Dec; 188(3):240-8. PubMed ID: 25449316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.
    McNally E; Nan F; Botton GA; Schwarcz HP
    Micron; 2013 Jun; 49():46-53. PubMed ID: 23545162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of collagen fibrils in cross sections of bone by electron energy loss spectroscopy (EELS).
    Lee BEJ; Luo L; Grandfield K; Andrei CM; Schwarcz HP
    Micron; 2019 Sep; 124():102706. PubMed ID: 31255883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial bonding between mineral platelets in bone and its effect on mechanical properties of bone.
    Pang S; Schwarcz HP; Jasiuk I
    J Mech Behav Biomed Mater; 2021 Jan; 113():104132. PubMed ID: 33049620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for the ultrastructure of bone based on electron microscopy of ion-milled sections.
    McNally EA; Schwarcz HP; Botton GA; Arsenault AL
    PLoS One; 2012; 7(1):e29258. PubMed ID: 22272230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focused ion beam-SEM 3D analysis of mineralized osteonal bone: lamellae and cement sheath structures.
    Raguin E; Rechav K; Shahar R; Weiner S
    Acta Biomater; 2021 Feb; 121():497-513. PubMed ID: 33217569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone.
    Falgayrac G; Facq S; Leroy G; Cortet B; Penel G
    Appl Spectrosc; 2010 Jul; 64(7):775-80. PubMed ID: 20615291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone structure: from angstroms to microns.
    Weiner S; Traub W
    FASEB J; 1992 Feb; 6(3):879-85. PubMed ID: 1740237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ellipsoidal mesoscale mineralization pattern in human cortical bone revealed in 3D by plasma focused ion beam serial sectioning.
    Binkley DM; Deering J; Yuan H; Gourrier A; Grandfield K
    J Struct Biol; 2020 Nov; 212(2):107615. PubMed ID: 32927057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of plate orientation on apparent thickness of mineral plates by transmission electron microscopy.
    Schwarcz H; Micheletti C; Grandfield K
    J Bone Miner Metab; 2024 May; 42(3):344-351. PubMed ID: 38733377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae.
    Schrof S; Varga P; Galvis L; Raum K; Masic A
    J Struct Biol; 2014 Sep; 187(3):266-275. PubMed ID: 25025981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different fibrillar architectures coexisting in Haversian bone.
    Raspanti M; Guizzardi S; Strocchi R; Ruggeri A
    Ital J Anat Embryol; 1995; 100 Suppl 1():103-12. PubMed ID: 11322282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternating lamellar structure in human cellular cementum and rat compact bone: Its structure and formation.
    Yamamoto T; Hasegawa T; Hongo H; Amizuka N
    J Oral Biosci; 2019 Jun; 61(2):105-114. PubMed ID: 31109862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transitional structures in lamellar bone.
    Ziv V; Sabanay I; Arad T; Traub W; Weiner S
    Microsc Res Tech; 1996 Feb; 33(2):203-13. PubMed ID: 8845519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphometry and patterns of lamellar bone in human Haversian systems.
    Pazzaglia UE; Congiu T; Marchese M; Spagnuolo F; Quacci D
    Anat Rec (Hoboken); 2012 Sep; 295(9):1421-9. PubMed ID: 22807326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.