These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30008212)

  • 1. Highly Ordered and Field-Free 3D DNA Nanostructure: The Next Generation of DNA Nanomachine for Rapid Single-Step Sensing.
    Zhang P; Jiang J; Yuan R; Zhuo Y; Chai Y
    J Am Chem Soc; 2018 Aug; 140(30):9361-9364. PubMed ID: 30008212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual amplification ratiometric biosensor based on a DNA tetrahedron nanostructure and hybridization chain reaction for the ultrasensitive detection of microRNA-133a.
    Zhu L; Ye J; Wang S; Yan M; Zhu Q; Huang J; Yang X
    Chem Commun (Camb); 2019 Sep; 55(77):11551-11554. PubMed ID: 31490470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic 3D DNA nanostructure based on silicon-supported lipid bilayers: a highly efficient DNA nanomachine for rapid and sensitive sensing.
    Wen ZB; Peng X; Yang ZZ; Zhuo Y; Chai YQ; Liang WB; Yuan R
    Chem Commun (Camb); 2019 Nov; 55(89):13414-13417. PubMed ID: 31638106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-layer 3D DNA nanostructure: The next generation of ultrafast DNA nanomachine for microRNA sensing and intracellular imaging.
    Meng R; Zhang X; Liu J; Zhou Y; Zhang P; Chai Y; Yuan R
    Biosens Bioelectron; 2023 Oct; 237():115517. PubMed ID: 37459686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A core-brush 3D DNA nanostructure: the next generation of DNA nanomachine for ultrasensitive sensing and imaging of intracellular microRNA with rapid kinetics.
    Kong L; Kou B; Zhang X; Wang D; Yuan Y; Zhuo Y; Chai Y; Yuan R
    Chem Sci; 2021 Dec; 12(48):15953-15959. PubMed ID: 35024119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of cyclic metal-DNA nanostructures using ruthenium tris(bipyridine)-branched oligonucleotides.
    Mitra D; Di Cesare N; Sleiman HF
    Angew Chem Int Ed Engl; 2004 Nov; 43(43):5804-8. PubMed ID: 15523719
    [No Abstract]   [Full Text] [Related]  

  • 7. Target induced reconstruction of DNAzymatic amplifier nanomachines in living cells for concurrent imaging and gene silencing.
    Li JJ; Li WN; Du WF; Lv MM; Wu ZK; Jiang JH
    Chem Commun (Camb); 2018 Sep; 54(75):10626-10629. PubMed ID: 30178789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency 3D DNA Walker Immobilized by a DNA Tetrahedral Nanostructure for Fast and Ultrasensitive Electrochemical Detection of MiRNA.
    Zhang XL; Li SS; Liu YJ; Liu WW; Kong LQ; Chai YQ; Luo XL; Yuan R
    Anal Chem; 2023 Feb; 95(8):4077-4085. PubMed ID: 36787389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic bead-based hybridization assay for electrochemical detection of microRNA.
    Bartosik M; Hrstka R; Palecek E; Vojtesek B
    Anal Chim Acta; 2014 Feb; 813():35-40. PubMed ID: 24528657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex.
    Zhang J; Qi H; Li Y; Yang J; Gao Q; Zhang C
    Anal Chem; 2008 Apr; 80(8):2888-94. PubMed ID: 18338873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltammetry of osmium-modified DNA at a mercury film electrode: application in detecting DNA hybridization.
    Kostecka P; Havran L; Pivonkova H; Fojta M
    Bioelectrochemistry; 2004 Jun; 63(1-2):245-8. PubMed ID: 15110280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridization biosensor using di(2,2'-bipyridine)osmium (III) as electrochemical indicator for detection of polymerase chain reaction product of hepatitis B virus DNA.
    Ju HX; Ye YK; Zhao JH; Zhu YL
    Anal Biochem; 2003 Feb; 313(2):255-61. PubMed ID: 12605862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA nanomachine-based regenerated sensing platform: a novel electrochemiluminescence resonance energy transfer strategy for ultra-high sensitive detection of microRNA from cancer cells.
    Zhang P; Li Z; Wang H; Zhuo Y; Yuan R; Chai Y
    Nanoscale; 2017 Feb; 9(6):2310-2316. PubMed ID: 28134381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ru(II) tris(bipyridyl) complexes with six oligonucleotide arms as precursors for the generation of supramolecular assemblies.
    Stewart KM; Rojo J; McLaughlin LW
    Angew Chem Int Ed Engl; 2004 Nov; 43(43):5808-11. PubMed ID: 15523720
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.
    Ke Y; Castro C; Choi JH
    Annu Rev Biomed Eng; 2018 Jun; 20():375-401. PubMed ID: 29618223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing DNAzyme-Powered Nanomachines Simultaneously Responsive to Multiple MicroRNAs.
    Zhong X; Yang S; Yang P; Du H; Hou X; Chen J; Zhou R
    Chemistry; 2018 Dec; 24(71):19024-19031. PubMed ID: 30243031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor.
    Ge Z; Lin M; Wang P; Pei H; Yan J; Shi J; Huang Q; He D; Fan C; Zuo X
    Anal Chem; 2014 Feb; 86(4):2124-30. PubMed ID: 24495151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-driven DNA nanomachine with a photoresponsive molecular engine.
    Kamiya Y; Asanuma H
    Acc Chem Res; 2014 Jun; 47(6):1663-72. PubMed ID: 24617966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic acid functionalized graphene for biosensing.
    Bonanni A; Ambrosi A; Pumera M
    Chemistry; 2012 Feb; 18(6):1668-73. PubMed ID: 22213459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.