These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 30008297)

  • 1. A Dedicated Population for Reward Coding in the Hippocampus.
    Gauthier JL; Tank DW
    Neuron; 2018 Jul; 99(1):179-193.e7. PubMed ID: 30008297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different encoding of reward location in dorsal and intermediate hippocampus.
    Jarzebowski P; Hay YA; Grewe BF; Paulsen O
    Curr Biol; 2022 Feb; 32(4):834-841.e5. PubMed ID: 35016008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjunctive reward-place coding properties of dorsal distal CA1 hippocampus cells.
    Xiao Z; Lin K; Fellous JM
    Biol Cybern; 2020 Apr; 114(2):285-301. PubMed ID: 32266474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1.
    Danielson NB; Zaremba JD; Kaifosh P; Bowler J; Ladow M; Losonczy A
    Neuron; 2016 Aug; 91(3):652-65. PubMed ID: 27397517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.
    Lansink CS; Meijer GT; Lankelma JV; Vinck MA; Jackson JC; Pennartz CM
    J Neurosci; 2016 Oct; 36(41):10598-10610. PubMed ID: 27733611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in reward biased spatial representations in the lateral septum and hippocampus.
    Wirtshafter HS; Wilson MA
    Elife; 2020 May; 9():. PubMed ID: 32452763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hippocampal-dependent navigation in head-fixed mice using a floating real-world environment.
    Stuart SA; Palacios-Filardo J; Domanski A; Udakis M; Duguid I; Jones MW; Mellor JR
    Sci Rep; 2024 Jun; 14(1):14315. PubMed ID: 38906952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Firing Patterns Are More Schematic and Less Sensitive to Changes in Background Visual Scenes in the Subiculum than in the Hippocampus.
    Lee HW; Lee SM; Lee I
    J Neurosci; 2018 Aug; 38(34):7392-7408. PubMed ID: 30012689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insensitivity of Place Cells to the Value of Spatial Goals in a Two-Choice Flexible Navigation Task.
    Duvelle É; Grieves RM; Hok V; Poucet B; Arleo A; Jeffery KJ; Save E
    J Neurosci; 2019 Mar; 39(13):2522-2541. PubMed ID: 30696727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking hippocampal multiplexed tuning, Hebbian plasticity and navigation.
    Moore JJ; Cushman JD; Acharya L; Popeney B; Mehta MR
    Nature; 2021 Nov; 599(7885):442-448. PubMed ID: 34671157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
    Sato M; Kawano M; Mizuta K; Islam T; Lee MG; Hayashi Y
    eNeuro; 2017; 4(3):. PubMed ID: 28484738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hippocampal CA1 activity correlated with the distance to the goal and navigation performance.
    Spiers HJ; Olafsdottir HF; Lever C
    Hippocampus; 2018 Sep; 28(9):644-658. PubMed ID: 29149774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation.
    Contreras M; Pelc T; Llofriu M; Weitzenfeld A; Fellous JM
    Hippocampus; 2018 Dec; 28(12):853-866. PubMed ID: 30067283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse Visual Cortex Is Modulated by Distance Traveled and by Theta Oscillations.
    Fournier J; Saleem AB; Diamanti EM; Wells MJ; Harris KD; Carandini M
    Curr Biol; 2020 Oct; 30(19):3811-3817.e6. PubMed ID: 32763173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple coordinated cellular dynamics mediate CA1 map plasticity.
    Mizuta K; Nakai J; Hayashi Y; Sato M
    Hippocampus; 2021 Mar; 31(3):235-243. PubMed ID: 33452849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Rule Learning and Corresponding CA1 Place Cell Reorientation Depend on Local Dopamine Release.
    Retailleau A; Morris G
    Curr Biol; 2018 Mar; 28(6):836-846.e4. PubMed ID: 29502949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential functions of the dorsal and intermediate regions of the hippocampus for optimal goal-directed navigation in VR space.
    Hwang H; Jin SW; Lee I
    Elife; 2024 Jul; 13():. PubMed ID: 39012807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation.
    de Lavilléon G; Lacroix MM; Rondi-Reig L; Benchenane K
    Nat Neurosci; 2015 Apr; 18(4):493-5. PubMed ID: 25751533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fos ensembles encode and shape stable spatial maps in the hippocampus.
    Pettit NL; Yap EL; Greenberg ME; Harvey CD
    Nature; 2022 Sep; 609(7926):327-334. PubMed ID: 36002569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During Goal Directed Navigation.
    Vedder LC; Miller AMP; Harrison MB; Smith DM
    Cereb Cortex; 2017 Jul; 27(7):3713-3723. PubMed ID: 27473323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.