These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30008627)

  • 1. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England.
    Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB
    Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthropocene survival of southern New England's salt marshes.
    Watson EB; Raposa KB; Carey JC; Wigand C; Warren RS
    Estuaries Coast; 2017 May; 40(3):617-625. PubMed ID: 30271312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic.
    Elsey-Quirk T; Watson EB; Raper K; Kreeger D; Paudel B; Haaf L; Maxwell-Doyle M; Padeletti A; Reilly E; Velinsky DJ
    Environ Monit Assess; 2022 Mar; 194(4):292. PubMed ID: 35325310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.
    Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M
    PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Runnels mitigate marsh drowning in microtidal salt marshes.
    Watson EB; Ferguson W; Champlin LK; White JD; Ernst N; Sylla HA; Wilburn BP; Wigand C
    Front Environ Sci; 2022 Nov; 10():1-17. PubMed ID: 36507472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.
    Donnelly JP; Bertness MD
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14218-23. PubMed ID: 11724926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh.
    Krask JL; Buck TL; Dunn RP; Smith EM
    PLoS One; 2022; 17(11):e0278215. PubMed ID: 36441803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water sources of plant uptake along a salt marsh flooding gradient.
    Redelstein R; Coners H; Knohl A; Leuschner C
    Oecologia; 2018 Oct; 188(2):607-622. PubMed ID: 30051213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in Great Sippewissett Marsh.
    Valiela I; Chenoweth K; Lloret J; Teal J; Howes B; Goehringer Toner D
    Sci Total Environ; 2023 Apr; 867():161546. PubMed ID: 36634783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Top-down and bottom-up controls on southern New England salt marsh crab populations.
    Raposa KB; McKinney RA; Wigand C; Hollister JW; Lovall C; Szura K; Gurak JA; McNamee J; Raithel C; Watson EB
    PeerJ; 2018; 6():e4876. PubMed ID: 29868281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BERM: a Belowground Ecosystem Resiliency Model for estimating Spartina alterniflora belowground biomass.
    O'Connell JL; Mishra DR; Alber M; Byrd KB
    New Phytol; 2021 Oct; 232(1):425-439. PubMed ID: 34242403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme Precipitation and Flooding Contribute to Sudden Vegetation Dieback in a Coastal Salt Marsh.
    Stagg CL; Osland MJ; Moon JA; Feher LC; Laurenzano C; Lane TC; Jones WR; Hartley SB
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.
    Armitage AR; Highfield WE; Brody SD; Louchouarn P
    PLoS One; 2015; 10(5):e0125404. PubMed ID: 25946132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecosystem engineers drive creek formation in salt marshes.
    Vu HD; Wie Ski K; Pennings SC
    Ecology; 2017 Jan; 98(1):162-174. PubMed ID: 28052386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Burrowing and foraging activity of marsh crabs under different inundation regimes.
    Szura K; McKinney R; Wigand C; Oczkowski A; Hanson A; Gurak J; Gárate M
    J Exp Mar Biol Ecol; 2017 Jan; 486():282-289. PubMed ID: 35308104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise.
    Alizad K; Hagen SC; Medeiros SC; Bilskie MV; Morris JT; Balthis L; Buckel CA
    PLoS One; 2018; 13(10):e0205176. PubMed ID: 30312304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting decadal-scale changes in elevation and vegetation in two Long Island Sound salt marshes.
    Carey JC; Raposa KB; Wigand C; Warren RS
    Estuaries Coast; 2017 May; 40(3):651-661. PubMed ID: 30008626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High nutrient loads amplify carbon cycling across California and New York coastal wetlands but with ambiguous effects on marsh integrity and sustainability.
    Watson EB; Rahman FI; Woolfolk A; Meyer R; Maher N; Wigand C; Gray AB
    PLoS One; 2022; 17(9):e0273260. PubMed ID: 36084085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.