These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30009007)

  • 1. Reagent-dictated site selectivity in intermolecular aliphatic C-H functionalizations using nitrogen-centered radicals.
    Carestia AM; Ravelli D; Alexanian EJ
    Chem Sci; 2018 Jun; 9(24):5360-5365. PubMed ID: 30009007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Amidyl Radicals for Intermolecular C-H Functionalizations.
    Tierney MM; Crespi S; Ravelli D; Alexanian EJ
    J Org Chem; 2019 Oct; 84(20):12983-12991. PubMed ID: 31441300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-selective aliphatic C-H bromination using N-bromoamides and visible light.
    Schmidt VA; Quinn RK; Brusoe AT; Alexanian EJ
    J Am Chem Soc; 2014 Oct; 136(41):14389-92. PubMed ID: 25232995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering Reactivity and Selectivity Patterns in Aliphatic C-H Bond Oxygenation of Cyclopentane and Cyclohexane Derivatives.
    Martin T; Galeotti M; Salamone M; Liu F; Yu Y; Duan M; Houk KN; Bietti M
    J Org Chem; 2021 Aug; 86(15):9925-9937. PubMed ID: 34115516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innate and guided C-H functionalization logic.
    Brückl T; Baxter RD; Ishihara Y; Baran PS
    Acc Chem Res; 2012 Jun; 45(6):826-39. PubMed ID: 22017496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Selective Aliphatic C-H Chlorination Using N-Chloroamides Enables a Synthesis of Chlorolissoclimide.
    Quinn RK; Könst ZA; Michalak SE; Schmidt Y; Szklarski AR; Flores AR; Nam S; Horne DA; Vanderwal CD; Alexanian EJ
    J Am Chem Soc; 2016 Jan; 138(2):696-702. PubMed ID: 26694767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-H Xanthylation: A Synthetic Platform for Alkane Functionalization.
    Czaplyski WL; Na CG; Alexanian EJ
    J Am Chem Soc; 2016 Oct; 138(42):13854-13857. PubMed ID: 27739673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.
    Choi GJ; Zhu Q; Miller DC; Gu CJ; Knowles RR
    Nature; 2016 Nov; 539(7628):268-271. PubMed ID: 27732585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning reactivity and selectivity in hydrogen atom transfer from aliphatic C-H bonds to alkoxyl radicals: role of structural and medium effects.
    Salamone M; Bietti M
    Acc Chem Res; 2015 Nov; 48(11):2895-903. PubMed ID: 26545103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations.
    Wang F; Chen P; Liu G
    Acc Chem Res; 2018 Sep; 51(9):2036-2046. PubMed ID: 30183262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine Control over Site and Substrate Selectivity in Hydrogen Atom Transfer-Based Functionalization of Aliphatic C-H Bonds.
    Salamone M; Carboni G; Bietti M
    J Org Chem; 2016 Oct; 81(19):9269-9278. PubMed ID: 27618473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalyst-controlled aliphatic C-H oxidations with a predictive model for site-selectivity.
    Gormisky PE; White MC
    J Am Chem Soc; 2013 Sep; 135(38):14052-5. PubMed ID: 24020940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive Model for Oxidative C-H Bond Functionalization Reactivity with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone.
    Morales-Rivera CA; Floreancig PE; Liu P
    J Am Chem Soc; 2017 Dec; 139(49):17935-17944. PubMed ID: 29136464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Quest for Selectivity in Hydrogen Atom Transfer Based Aliphatic C-H Bond Oxygenation.
    Milan M; Salamone M; Costas M; Bietti M
    Acc Chem Res; 2018 Sep; 51(9):1984-1995. PubMed ID: 30080039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote Regioselective Radical C-H Functionalization of Unactivated C-H Bonds in Amides: The Synthesis of
    Hu QP; Cheng J; Wang Y; Shi J; Wang BQ; Hu P; Zhao KQ; Pan F
    Org Lett; 2021 Jun; 23(11):4457-4462. PubMed ID: 33983034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective alkane C-H-bond functionalizations utilizing oxidative single-electron transfer and organocatalysis.
    Schreiner PR; Fokin AA
    Chem Rec; 2004; 3(5):247-57. PubMed ID: 14762825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis.
    Natoli SN; Hartwig JF
    Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation and Reactivity of Amidyl Radicals: Manganese-Mediated Atom-Transfer Reaction.
    Liu RZ; Li J; Sun J; Liu XG; Qu S; Li P; Zhang B
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4428-4433. PubMed ID: 31912602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.