BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30009039)

  • 1. Examination of the xanthosine response on gene expression of mammary epithelial cells using RNA-seq technology.
    Choudhary S; Li W; Bickhart D; Verma R; Sethi RS; Mukhopadhyay CS; Choudhary RK
    J Anim Sci Technol; 2018; 60():18. PubMed ID: 30009039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo response of xanthosine on mammary gene expression of lactating Beetal goat.
    Choudhary RK; Choudhary S; Verma R
    Mol Biol Rep; 2018 Aug; 45(4):581-590. PubMed ID: 29804277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of xanthosine treatment on gene expression of mammary glands in early lactating goats.
    Choudhary RK; Choudhary S; Pathak D; Udehiya R; Verma R; Kaswan S; Sharma A; Gupta D; Honparkhe M; Capuco AV
    J Dairy Res; 2018 Aug; 85(3):288-294. PubMed ID: 30156522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Goat milk: Non-invasive source for mammary epithelial cell isolation and in vitro culture.
    Saipin N; Noophun J; Chumyim P; Rungsiwiwut R
    Anat Histol Embryol; 2018 Jun; 47(3):187-194. PubMed ID: 29460420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation.
    Rauner G; Barash I
    Exp Cell Res; 2014 Oct; 328(1):186-196. PubMed ID: 24992045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo expansion of the mammary stem/ progenitor cell population by xanthosine infusion.
    Capuco AV; Evock-Clover CM; Minuti A; Wood DL
    Exp Biol Med (Maywood); 2009 Apr; 234(4):475-82. PubMed ID: 19176874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro expansion of the mammary stem/progenitor cell population by xanthosine treatment.
    Choudhary RK; Capuco AV
    BMC Cell Biol; 2012 Jun; 13():14. PubMed ID: 22698263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrigenomic Role of Acetate and β-Hydroxybutyrate in Bovine Mammary Epithelial Cells.
    Song S; Jiang M; Zhou J; Zhao F; Hou X; Lin Y
    DNA Cell Biol; 2020 Mar; 39(3):389-397. PubMed ID: 31905020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of the mammary gland from GH transgenic goats during involution.
    Lin J; Bao ZK; Zhang Q; Hu WW; Yu QH; Yang Q
    Gene; 2015 Jul; 565(2):228-34. PubMed ID: 25865296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats.
    Lin X; Luo J; Zhang L; Zhu J
    Gene Expr; 2013; 16(1):1-13. PubMed ID: 24397207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of somatic cells from goat milk for dynamic studies of gene expression in the mammary gland.
    Boutinaud M; Rulquin H; Keisler DH; Djiane J; Jammes H
    J Anim Sci; 2002 May; 80(5):1258-69. PubMed ID: 12019613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-weaning increases in the milk-fat globule EGF-factor VIII on fat globules in mouse milk and in the uptake of the fat globules by HC11 mammary epithelial cells.
    Nakatani H; Yasueda T; Oshima K; Okajima T; Nadano D; Flint DJ; Matsuda T
    J Biochem; 2013 Jan; 153(1):31-41. PubMed ID: 23038672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The decrease in milk yield during once daily milking is due to regulation of synthetic activity rather than apoptosis of mammary epithelial cells in goats.
    Ben Chedly H; Lacasse P; Marnet PG; Boutinaud M
    Animal; 2013 Jan; 7(1):124-33. PubMed ID: 23031579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symposium review: Determinants of milk production: Understanding population dynamics in the bovine mammary epithelium.
    Capuco AV; Choudhary RK
    J Dairy Sci; 2020 Mar; 103(3):2928-2940. PubMed ID: 31704023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing.
    Cui X; Hou Y; Yang S; Xie Y; Zhang S; Zhang Y; Zhang Q; Lu X; Liu GE; Sun D
    BMC Genomics; 2014 Mar; 15():226. PubMed ID: 24655368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying differentially expressed genes in goat mammary epithelial cells induced by overexpression of
    Song N; Ma C; Guo Y; Cui S; Chen S; Chen Z; Ling Y; Zhang Y; Liu H
    Front Vet Sci; 2024; 11():1392152. PubMed ID: 38835896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep RNA-Seq reveals miRNome differences in mammary tissue of lactating Holstein and Montbéliarde cows.
    Billa PA; Faulconnier Y; Ye T; Chervet M; Le Provost F; Pires JAA; Leroux C
    BMC Genomics; 2019 Jul; 20(1):621. PubMed ID: 31362707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of RNA isolated from milk fat globules to profile mammary epithelial cell expression during lactation and transcriptional response to a bacterial infection.
    Brenaut P; Bangera R; Bevilacqua C; Rebours E; Cebo C; Martin P
    J Dairy Sci; 2012 Oct; 95(10):6130-44. PubMed ID: 22921620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of methionine stimulation of gene expression in dairy cow mammary epithelial cells using RNA-sequencing.
    Hou X; Jiang M; Zhou J; Song S; Zhao F; Lin Y
    J Dairy Res; 2020 May; 87(2):226-231. PubMed ID: 32375921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different model diets on milk composition and expression of genes related to fatty acid synthesis in the mammary gland of lactating dairy goats.
    Zhang H; Ao CJ; Khas-Erdene ; Song LW; Zhang XF
    J Dairy Sci; 2015 Jul; 98(7):4619-28. PubMed ID: 25981073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.