BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30009162)

  • 21. Analysis of High-Throughput RNA Bisulfite Sequencing Data.
    Rieder D; Finotello F
    Methods Mol Biol; 2017; 1562():143-154. PubMed ID: 28349459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome-Wide Mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and Noncoding RNAs.
    David R; Burgess A; Parker B; Li J; Pulsford K; Sibbritt T; Preiss T; Searle IR
    Plant Cell; 2017 Mar; 29(3):445-460. PubMed ID: 28062751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs.
    Legrand C; Tuorto F; Hartmann M; Liebers R; Jacob D; Helm M; Lyko F
    Genome Res; 2017 Sep; 27(9):1589-1596. PubMed ID: 28684555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation.
    Li D; Zhang B; Xing X; Wang T
    Methods; 2015 Jan; 72():29-40. PubMed ID: 25448294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome-Wide Detection of 5-Methylcytosine by Bisulfite Sequencing.
    Amort T; Sun X; Khokhlova-Cubberley D; Lusser A
    Methods Mol Biol; 2017; 1562():123-142. PubMed ID: 28349458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absolute quantification of single-base m
    Liu C; Sun H; Yi Y; Shen W; Li K; Xiao Y; Li F; Li Y; Hou Y; Lu B; Liu W; Meng H; Peng J; Yi C; Wang J
    Nat Biotechnol; 2023 Mar; 41(3):355-366. PubMed ID: 36302990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome-wide Mapping of Internal N
    Zhang LS; Liu C; Ma H; Dai Q; Sun HL; Luo G; Zhang Z; Zhang L; Hu L; Dong X; He C
    Mol Cell; 2019 Jun; 74(6):1304-1316.e8. PubMed ID: 31031084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N
    Xiong X; Li X; Yi C
    Curr Opin Chem Biol; 2018 Aug; 45():179-186. PubMed ID: 30007213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Landscape and Regulation of m
    Liu J; Li K; Cai J; Zhang M; Zhang X; Xiong X; Meng H; Xu X; Huang Z; Peng J; Fan J; Yi C
    Mol Cell; 2020 Jan; 77(2):426-440.e6. PubMed ID: 31676230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons.
    Meyer KD; Saletore Y; Zumbo P; Elemento O; Mason CE; Jaffrey SR
    Cell; 2012 Jun; 149(7):1635-46. PubMed ID: 22608085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide DNA methylome variation in two genetically distinct chicken lines using MethylC-seq.
    Li J; Li R; Wang Y; Hu X; Zhao Y; Li L; Feng C; Gu X; Liang F; Lamont SJ; Hu S; Zhou H; Li N
    BMC Genomics; 2015 Oct; 16():851. PubMed ID: 26497311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide analysis reveals that exon methylation facilitates its selective usage in the human transcriptome.
    Li S; Zhang J; Huang S; He X
    Brief Bioinform; 2018 Sep; 19(5):754-764. PubMed ID: 28334074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn's disease-associated fibrosis.
    Sadler T; Bhasin JM; Xu Y; Barnholz-Sloan J; Chen Y; Ting AH; Stylianou E
    Clin Epigenetics; 2016; 8():30. PubMed ID: 26973718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bisulfite Sequencing of RNA for Transcriptome-Wide Detection of 5-Methylcytosine.
    Trixl L; Rieder D; Amort T; Lusser A
    Methods Mol Biol; 2019; 1870():1-21. PubMed ID: 30539543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dynamic epitranscriptome: N6-methyladenosine and gene expression control.
    Meyer KD; Jaffrey SR
    Nat Rev Mol Cell Biol; 2014 May; 15(5):313-26. PubMed ID: 24713629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Longitudinal epitranscriptome profiling reveals the crucial role of N
    Zhang X; Yao Y; Han J; Yang Y; Chen Y; Tang Z; Gao F
    J Genet Genomics; 2020 Aug; 47(8):466-476. PubMed ID: 33268291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Messenger RNA modifications: Form, distribution, and function.
    Gilbert WV; Bell TA; Schaening C
    Science; 2016 Jun; 352(6292):1408-12. PubMed ID: 27313037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide identification of mRNA 5-methylcytosine in mammals.
    Huang T; Chen W; Liu J; Gu N; Zhang R
    Nat Struct Mol Biol; 2019 May; 26(5):380-388. PubMed ID: 31061524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA.
    Squires JE; Patel HR; Nousch M; Sibbritt T; Humphreys DT; Parker BJ; Suter CM; Preiss T
    Nucleic Acids Res; 2012 Jun; 40(11):5023-33. PubMed ID: 22344696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA.
    Hong EE; Okitsu CY; Smith AD; Hsieh CL
    Mol Cell Biol; 2013 Jul; 33(14):2683-90. PubMed ID: 23671186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.