These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30009256)
1. Chondrules as direct thermochemical sensors of solar protoplanetary disk gas. Libourel G; Portail M Sci Adv; 2018 Jul; 4(7):eaar3321. PubMed ID: 30009256 [TBL] [Abstract][Full Text] [Related]
2. Formation of chondrules in a moderately high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite. Hertwig AT; Defouilloy C; Kita NT Geochim Cosmochim Acta; 2018 Mar; 224():116-131. PubMed ID: 30713348 [TBL] [Abstract][Full Text] [Related]
3. The background temperature of the protoplanetary disk within the first four million years of the Solar System. Schrader DL; Fu RR; Desch SJ; Davidson J Earth Planet Sci Lett; 2018 Dec; 504():30-37. PubMed ID: 31708587 [TBL] [Abstract][Full Text] [Related]
4. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Bollard J; Connelly JN; Whitehouse MJ; Pringle EA; Bonal L; Jørgensen JK; Nordlund Å; Moynier F; Bizzarro M Sci Adv; 2017 Aug; 3(8):e1700407. PubMed ID: 28808680 [TBL] [Abstract][Full Text] [Related]
5. Short time interval for condensation of high-temperature silicates in the solar accretion disk. Luu TH; Young ED; Gounelle M; Chaussidon M Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1298-303. PubMed ID: 25605942 [TBL] [Abstract][Full Text] [Related]
6. Magnesium and Olsen MB; Wielandt D; Schiller M; Van Kooten EM; Bizzarro M Geochim Cosmochim Acta; 2016 Oct; 191():118-138. PubMed ID: 27563152 [TBL] [Abstract][Full Text] [Related]
7. Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship. Chaumard N; Defouilloy C; Kita NT Geochim Cosmochim Acta; 2018 May; 228():220-242. PubMed ID: 30713349 [TBL] [Abstract][Full Text] [Related]
8. Evidence for oxygen isotopic exchange in chondrules from Kaba (CV3.1) carbonaceous chondrite during aqueous fluid-rock interaction on the CV parent asteroid. Krot AN; Nagashima K; Fintor K; Pál-Molnár E Acta Geogr Geol Meteorol Debr Geol Gemorfol Termeszfoldr Sor; 2019 Feb; 246():419-435. PubMed ID: 30930966 [TBL] [Abstract][Full Text] [Related]
9. The formation of chondrules: petrologic tests of the shock wave model. Connolly Jr HC ; Love SG Science; 1998 Apr; 280(5360):62-7. PubMed ID: 9525858 [TBL] [Abstract][Full Text] [Related]
10. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Connelly JN; Bizzarro M; Krot AN; Nordlund Å; Wielandt D; Ivanova MA Science; 2012 Nov; 338(6107):651-5. PubMed ID: 23118187 [TBL] [Abstract][Full Text] [Related]
11. Chondrules reveal large-scale outward transport of inner Solar System materials in the protoplanetary disk. Williams CD; Sanborn ME; Defouilloy C; Yin QZ; Kita NT; Ebel DS; Yamakawa A; Yamashita K Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23426-23435. PubMed ID: 32900966 [TBL] [Abstract][Full Text] [Related]
12. Extended chondrule formation intervals in distinct physicochemical environments: Evidence from Al-Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase. Tenner TJ; Nakashima D; Ushikubo T; Tomioka N; Kimura M; Weisberg MK; Kita NT Geochim Cosmochim Acta; 2019 Sep; 260():133-160. PubMed ID: 32255837 [TBL] [Abstract][Full Text] [Related]
13. Impact jetting as the origin of chondrules. Johnson BC; Minton DA; Melosh HJ; Zuber MT Nature; 2015 Jan; 517(7534):339-41. PubMed ID: 25592538 [TBL] [Abstract][Full Text] [Related]
14. Young chondrules in CB chondrites from a giant impact in the early Solar System. Krot AN; Amelin Y; Cassen P; Meibom A Nature; 2005 Aug; 436(7053):989-92. PubMed ID: 16107841 [TBL] [Abstract][Full Text] [Related]
15. First evidence for silica condensation within the solar protoplanetary disk. Komatsu M; Fagan TJ; Krot AN; Nagashima K; Petaev MI; Kimura M; Yamaguchi A Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7497-7502. PubMed ID: 29967181 [TBL] [Abstract][Full Text] [Related]
16. Noble-gas-rich chondrules in an enstatite meteorite. Okazaki R; Takaoka N; Nagao K; Sekiya M; Nakamura T Nature; 2001 Aug; 412(6849):795-8. PubMed ID: 11518959 [TBL] [Abstract][Full Text] [Related]
17. Tungsten isotopic constraints on the age and origin of chondrules. Budde G; Kleine T; Kruijer TS; Burkhardt C; Metzler K Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2886-91. PubMed ID: 26929340 [TBL] [Abstract][Full Text] [Related]
18. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Johansen A; Low MM; Lacerda P; Bizzarro M Sci Adv; 2015 Apr; 1(3):e1500109. PubMed ID: 26601169 [TBL] [Abstract][Full Text] [Related]
19. Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules. Marrocchi Y; Chaussidon M; Piani L; Libourel G Sci Adv; 2016 Jul; 2(7):e1601001. PubMed ID: 27419237 [TBL] [Abstract][Full Text] [Related]
20. Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Cuzzi JN; Alexander CM Nature; 2006 May; 441(7092):483-5. PubMed ID: 16724060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]