These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 30009308)
1. Binary "island" shaped arrays with high-density hot spots for surface-enhanced Raman scattering substrates. Zhao W; Xiao S; Zhang Y; Pan D; Wen J; Qian X; Wang D; Cao H; He W; Quan M; Yang Z Nanoscale; 2018 Aug; 10(29):14220-14229. PubMed ID: 30009308 [TBL] [Abstract][Full Text] [Related]
2. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique. Fu Q; Zhan Z; Dou J; Zheng X; Xu R; Wu M; Lei Y ACS Appl Mater Interfaces; 2015 Jun; 7(24):13322-8. PubMed ID: 26023763 [TBL] [Abstract][Full Text] [Related]
3. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
4. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
5. In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation. Liu Y; Zhang L; Liu X; Zhang Y; Yan Y; Zhao Y Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120803. PubMed ID: 35007906 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive SERS performance in 3D "sunflower-like" nanoarrays decorated with Ag nanoparticles. Zhang X; Xiao X; Dai Z; Wu W; Zhang X; Fu L; Jiang C Nanoscale; 2017 Mar; 9(9):3114-3120. PubMed ID: 28203665 [TBL] [Abstract][Full Text] [Related]
7. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS. Chen A; DePrince AE; Demortière A; Joshi-Imre A; Shevchenko EV; Gray SK; Welp U; Vlasko-Vlasov VK Small; 2011 Aug; 7(16):2365-71. PubMed ID: 21630447 [TBL] [Abstract][Full Text] [Related]
8. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering. Chen M; Phang IY; Lee MR; Yang JK; Ling XY Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081 [TBL] [Abstract][Full Text] [Related]
10. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field. Guo QH; Zhang CJ; Wei C; Xu MM; Yuan YX; Gu RA; Yao JL Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():336-42. PubMed ID: 26232577 [TBL] [Abstract][Full Text] [Related]
11. A Low-cost, Highly-stable Surface Enhanced Raman Scattering Substrate by Si Nanowire Arrays Decorated with Au Nanoparticles and Au Backplate. Lee BS; Lin DZ; Yen TJ Sci Rep; 2017 Jul; 7(1):4604. PubMed ID: 28676628 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates. Sun M; Qian C; Wu W; Yu W; Wang Y; Mao H Nanotechnology; 2012 Sep; 23(38):385303. PubMed ID: 22948251 [TBL] [Abstract][Full Text] [Related]
13. Self-Assembled Au Nanoparticle Monolayers on Silicon in Two- and Three-Dimensions for Surface-Enhanced Raman Scattering Sensing. Bartschmid T; Farhadi A; Musso ME; Goerlitzer ESA; Vogel N; Bourret GR ACS Appl Nano Mater; 2022 Aug; 5(8):11839-11851. PubMed ID: 36062062 [TBL] [Abstract][Full Text] [Related]
14. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography. Zhao X; Wen J; Zhang M; Wang D; Wang Y; Chen L; Zhang Y; Yang J; Du Y ACS Appl Mater Interfaces; 2017 Mar; 9(8):7710-7716. PubMed ID: 28191921 [TBL] [Abstract][Full Text] [Related]
15. Binary Thiol-Capped Gold Nanoparticle Monolayer Films for Quantitative Surface-Enhanced Raman Scattering Analysis. Tian H; Li H; Fang Y ACS Appl Mater Interfaces; 2019 May; 11(17):16207-16213. PubMed ID: 30964281 [TBL] [Abstract][Full Text] [Related]
16. Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate. Guo Q; Xu M; Yuan Y; Gu R; Yao J Langmuir; 2016 May; 32(18):4530-7. PubMed ID: 27101361 [TBL] [Abstract][Full Text] [Related]
17. Reproducible SERS substrates manipulated by interparticle spacing and particle diameter of gold nano-island array using in-situ thermal evaporation. Yang MC; Chien TY; Cheng YW; Hsieh CK; Syu WL; Wang KS; Chen YC; Chen JS; Chen CC; Liu TY Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123190. PubMed ID: 37499474 [TBL] [Abstract][Full Text] [Related]
19. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications. Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245 [TBL] [Abstract][Full Text] [Related]
20. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Wy Y; Jung H; Hong JW; Han SW Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]