BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 3000943)

  • 1. Neutrophils may directly synthesize both H2O2 and O2- since surface stimuli induce their release in stimulus-specific ratios.
    Hoffstein ST; Gennaro DE; Manzi RM
    Inflammation; 1985 Dec; 9(4):425-37. PubMed ID: 3000943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface contact inhibits neutrophil superoxide generation induced by soluble stimuli.
    Hoffstein ST; Gennaro DE; Manzi RM
    Lab Invest; 1985 May; 52(5):515-22. PubMed ID: 2985869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphonuclear leukocyte chemiluminescence induced by formylmethionyl-leucyl-phenylalanine and phorbol myristate acetate: effects of catalase and superoxide dismutase.
    Dahlgren C
    Agents Actions; 1987 Jun; 21(1-2):104-12. PubMed ID: 2820211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of respiratory burst inhibitors on nitric oxide production by human neutrophils.
    Carreras MC; Riobó NA; Pargament GA; Boveris A; Poderoso JJ
    Free Radic Res; 1997 Apr; 26(4):325-34. PubMed ID: 9167937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular production of reactive oxygen species in human neutrophils following activation by the soluble stimuli FMLP, dioctanoylglycerol and ionomycin.
    Follin P; Johansson A; Dahlgren C
    Cell Biochem Funct; 1991 Jan; 9(1):29-37. PubMed ID: 1648459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal adaptation of human neutrophil metabolic responsiveness to the peptide formylmethionyl-leucyl phenylalanine: a comparison between human neutrophils and granule-depleted neutrophil cytoplasts.
    Dahlgren C
    Cell Biochem Funct; 1990 Jan; 8(1):57-64. PubMed ID: 2160338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of superoxide generation and myeloperoxidase release by carvedilol after receptor and nonreceptor stimulation of human neutrophils.
    Macickova T; Pecivova J; Nosal R; Lojek A; Pekarova M; Cupanikova D
    Neuro Endocrinol Lett; 2008 Oct; 29(5):790-3. PubMed ID: 18987595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme.
    Guthrie LA; McPhail LC; Henson PM; Johnston RB
    J Exp Med; 1984 Dec; 160(6):1656-71. PubMed ID: 6096475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus interactions in release of superoxide anion (O2-) from human neutrophils. Further evidence for multiple pathways of activation.
    Bender JG; Van Epps DE
    Inflammation; 1985 Mar; 9(1):67-79. PubMed ID: 2984122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of ferrocytochrome C oxidation by hydrogen peroxide.
    Kownatzki E; Uhrich S; Bethke P
    Agents Actions; 1991 Nov; 34(3-4):393-6. PubMed ID: 1667246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engagement of adenosine receptors inhibits hydrogen peroxide (H2O2-) release by activated human neutrophils.
    Cronstein BN; Kubersky SM; Weissmann G; Hirschhorn R
    Clin Immunol Immunopathol; 1987 Jan; 42(1):76-85. PubMed ID: 3024892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of neutrophil HOCl generation: ligand-dependent responses and the role of surface adhesion.
    Chatham WW; Turkiewicz A; Blackburn WD
    J Leukoc Biol; 1994 Nov; 56(5):654-60. PubMed ID: 7964173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutrophil erythrotoxicity induced by phorbol myristate acetate: mechanisms involved in neutrophil activation.
    Geffner JR; Fontán PA; Sordelli DO; Isturiz MA
    J Leukoc Biol; 1991 Apr; 49(4):352-9. PubMed ID: 2002283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the respiratory burst and tyrosine phosphorylation of proteins in human neutrophils: no direct relationship and involvement of protein kinase C-dependent and -independent signaling pathways.
    Azuma EK; Kitagawa S; Yuo A; Mizoguchi H; Umezawa K; Takaku F; Saito M
    Biochim Biophys Acta; 1993 Nov; 1179(2):213-23. PubMed ID: 8218364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen peroxide modulation of the superoxide anion production by stimulated neutrophils.
    Dekaris I; Marotti T; Sprong RC; van Oirschot JF; van Asbeck BS
    Immunopharmacol Immunotoxicol; 1998 Feb; 20(1):103-17. PubMed ID: 9543702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils.
    Lundqvist H; Dahlgren C
    Free Radic Biol Med; 1996; 20(6):785-92. PubMed ID: 8728025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of H2O2 production in porcine thyroid cells: evidence for intermediary formation of superoxide anion by NADPH-dependent H2O2-generating machinery.
    Nakamura Y; Makino R; Tanaka T; Ishimura Y; Ohtaki S
    Biochemistry; 1991 May; 30(20):4880-6. PubMed ID: 1645182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lucigenin chemiluminescence in the assessment of neutrophil superoxide production.
    Gyllenhammar H
    J Immunol Methods; 1987 Mar; 97(2):209-13. PubMed ID: 3029229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils.
    Zeller JM; Sullivan BL
    J Leukoc Biol; 1992 Oct; 52(4):449-55. PubMed ID: 1328445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.